T. Li, O. Kasian, S. Cherevko, S. Zhang, S. Geiger, C. Scheu, P. Felfer, D. Raabe, B. Gault, K. J. J. Mayrhofer
Index: 10.1038/s41929-018-0043-3
Full Text: HTML
The topmost atomic layers of electrocatalysts determine the mechanism and kinetics of reactions in many important industrial processes, such as water splitting, chlor-electrolysis or fuel cells. Optimizing the performance of electrocatalysts requires a detailed understanding of surface-state changes during the catalytic process, ideally at the atomic scale. Here, we use atom probe tomography to reveal the three-dimensional structure of the first few atomic layers of electrochemically grown iridium oxide, an efficient electrocatalyst for the oxygen evolution reaction. We unveil the formation of confined, non-stoichiometric Ir–O species during oxygen evolution. These species gradually transform to IrO2, providing improved stability but also a decrease in activity. Additionally, electrochemical growth of oxide in deuterated solutions allowed us to trace hydroxy-groups and water molecules present in the regions of the oxide layer that are favourable for the oxygen evolution and iridium dissolution reactions. Overall, we demonstrate how tomography with near-atomic resolution advances the understanding of complex relationships between surface structure, surface state and function in electrocatalysis.
Electrocatalytic transformation of HF impurity to H2 and LiF...
2018-04-09 [10.1038/s41929-018-0047-z] |
Foundations and strategies of the construction of hybrid cat...
2018-04-09 [10.1038/s41929-018-0052-2] |
Complex dynamics in a two-enzyme reaction network with subst...
2018-04-09 [10.1038/s41929-018-0053-1] |
Overcoming ammonia synthesis scaling relations with plasma-e...
2018-04-02 [10.1038/s41929-018-0045-1] |
Efficient hydrogen peroxide generation using reduced graphen...
2018-03-26 [10.1038/s41929-018-0044-2] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved