Nature Communications 2015-01-01

Influencing the properties of dysprosium single-molecule magnets with phosphorus donor ligands.

Thomas Pugh, Floriana Tuna, Liviu Ungur, David Collison, Eric J L McInnes, Liviu F Chibotaru, Richard A Layfield

Index: Nat. Commun. 6 , 7492, (2015)

Full Text: HTML

Abstract

Single-molecule magnets are a type of coordination compound that can retain magnetic information at low temperatures. Single-molecule magnets based on lanthanides have accounted for many important advances, including systems with very large energy barriers to reversal of the magnetization, and a di-terbium complex that displays magnetic hysteresis up to 14 K and shows strong coercivity. Ligand design is crucial for the development of new single-molecule magnets: organometallic chemistry presents possibilities for using unconventional ligands, particularly those with soft donor groups. Here we report dysprosium single-molecule magnets with neutral and anionic phosphorus donor ligands, and show that their properties change dramatically when varying the ligand from phosphine to phosphide to phosphinidene. A phosphide-ligated, trimetallic dysprosium single-molecule magnet relaxes via the second-excited Kramers' doublet, and, when doped into a diamagnetic matrix at the single-ion level, produces a large energy barrier of 256 cm(-1) and magnetic hysteresis up to 4.4 K.

Related Compounds

Structure Name/CAS No. Articles
n-Butyllithium Structure n-Butyllithium
CAS:109-72-8
Lithium Aluminium Hydride Structure Lithium Aluminium Hydride
CAS:16853-85-3