Biomarkers in Medicine 2011-10-01

α-methyl-L-tryptophan: mechanisms for tracer localization of epileptogenic brain regions.

Diane C Chugani

Index: Biomark. Med. 5(5) , 567-75, (2011)

Full Text: HTML

Abstract

The purpose of this paper is to discuss the mechanisms of α-[(11)C]methyl-L-tryptophan (AMT) PET as an in vivo biomarker for detection of epileptogenic cortex. AMT was originally designed as a tracer to measure the serotonin synthesis rate. This tracer was first applied in patients with medically refractory epilepsy in an attempt to detect changes in serotonin synthesis based upon reports of increased serotonergic innervation in cortical specimens obtained following epilepsy surgery. The first group of epilepsy patients undergoing AMT PET scans were patients with tuberous sclerosis complex. Studies of brain tissue subsequent to epilepsy surgery in these patients with tuberous sclerosis complex implicated the kynurenine pathway of tryptophan metabolism as a primary mechanism of increased brain tissue retention of AMT in epileptogenic brain regions, rather than alterations in serotonin synthesis. Kinetic analyses of AMT in brain tumors indicate changes in tryptophan transport and tissue retention in other pools as well. These studies indicate that AMT PET may be a biomarker of immune activation in the epileptogenic process.


Related Compounds

Related Articles:

High-throughput fluorescence-based screening assays for tryptophan-catabolizing enzymes.

2014-10-01

[J. Biomol. Screen. 19(9) , 1266-74, (2014)]

Improved characterization of EV preparations based on protein to lipid ratio and lipid properties.

2015-01-01

[PLoS ONE 10(3) , e0121184, (2015)]

Development of High-purity Certified Reference Materials for 17 Proteinogenic Amino Acids by Traceable Titration Methods.

2015-01-01

[Anal. Sci. 31 , 805-14, (2015)]

Seasonal postembryonic maturation of the diurnal rhythm of serotonin in the chicken pineal gland.

2015-02-01

[Chronobiol. Int. 32(1) , 59-70, (2015)]

Assessment of protein modifications in liver of rats under chronic treatment with paracetamol (acetaminophen) using two complementary mass spectrometry-based metabolomic approaches.

2015-04-29

[J. Proteomics 120 , 194-203, (2015)]

More Articles...