Optics Letters 2017-07-17

Demonstration of an iron fluorescence lidar operating at 372 nm wavelength using a newly-developed Nd:YAG laser

Bernd Kaifler, Christian Büdenbender, Peter Mahnke, Matthias Damm, Daniel Sauder, Natalie Kaifler, and Markus Rapp

Index: 10.1364/OL.42.002858

Full Text: HTML

Abstract

We report on the development of a pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser operating at a 1116 nm wavelength. Because the third harmonic is within a few gigahertz of the 372 nm absorption line of iron, this laser system represents an alternative to alexandrite lasers commonly used in iron fluorescence lidars. With our prototype, we achieved a 0.5 W at 372 nm wavelength and a 100 Hz pulse repetition frequency. As a proof of concept, we show iron density measurements, which have been acquired using the novel lidar transmitter.

Latest Articles:

End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam

2017-07-20

[10.1364/OL.42.002910]

Mid-infrared beam splitter for ultrashort pulses

2017-07-20

[10.1364/OL.42.002918]

Piston alignment for a segmented-aperture imaging system by using piston-sweep phasing

2017-07-20

[10.1364/OL.42.002922]

Controllable single-photon nonreciprocal propagation between two waveguides chirally coupled to a quantum emitter

2017-07-20

[10.1364/OL.42.002914]

Anomalous dispersion engineering of co-sputtering Ag-AZO hybrids for antireflection coatings

2017-07-19

[10.1364/OL.42.002894]

More Articles...