ACS Sensors 2018-01-05

Surface-Enhanced Infrared Absorption: Pushing the Frontier for On-Chip Gas Sensing

Xinyuan Chong, Yujing Zhang, Erwen Li, Ki-Joong Kim, Paul R. Ohodnicki, Chih-hung Chang, Alan X. Wang

Index: 10.1021/acssensors.7b00891

Full Text: HTML

Abstract

Surface-enhanced infrared absorption (SEIRA) is capable of identifying molecular fingerprints by resonant detection of infrared vibrational modes through the coupling with plasmonic modes of metallic nanostructures. However, SEIRA for on-chip gas sensing is still not very successful due to the intrinsically weak light-matter interaction between photons and gas molecules and the technical challenges in accumulating sufficient gas species in the vicinity of the spatially localized enhanced electric field, namely, the “hot-spots”, generated through plasmonics. In this paper, we present a suspended silicon nitride (Si3N4) nanomembrane device by integrating plasmonic nanopatch gold antennas with metal–organic framework (MOF), which can largely adsorb carbon dioxide (CO2) through its nanoporous structure. Unlike conventional SEIRA sensing relying on highly localized hot-spots of plasmonic nanoantennas or nanoparticles, the device reported in this paper engineered the coupled surface plasmon polaritons in the metal–Si3N4 and metal–MOF interfaces to achieve strong optical field enhancement across the entire MOF film. We successfully demonstrated on-chip gas sensing of CO2 with more than 1800× enhancement factors by combining the concentration effect from the 2.7 μm MOF thin film and the optical field enhancement of the plasmonic nanopatch antennas.

Latest Articles:

Modified Organosilica Core–Shell Nanoparticles for Stable pH Sensing in Biological Solutions

2018-04-19

[10.1021/acssensors.8b00034]

Rationally Designed Sensing Selectivity and Sensitivity of an Aerolysin Nanopore via Site-Directed Mutagenesis

2018-04-17

[10.1021/acssensors.8b00021]

Batch Fabrication of Ultrasensitive Carbon Nanotube Hydrogen Sensors with Sub-ppm Detection Limit

2018-04-11

[10.1021/acssensors.8b00006]

Defected and Functionalized Germanene-based Nanosensors under Sulfur Comprising Gas Exposure

2018-04-09

[10.1021/acssensors.8b00167]

Sensitivity-Tunable Colorimetric Detection of Chloropicrin Vapor on Nylon-6 Nanofibrous Membrane Based on a Detoxification Reaction with Biological Thiols

2018-04-04

[10.1021/acssensors.8b00135]

More Articles...