Composites Part A: Applied Science and Manufacturing 2018-01-02

Mechanical properties and strain monitoring of glass-epoxy composites with graphene-coated fibers

Haroon Mahmood, Lia Vanzetti, Massimo Bersani, Alessandro Pegoretti

Index: 10.1016/j.compositesa.2017.12.023

Full Text: HTML

Abstract

An engineered interphase can improve the mechanical properties of epoxy/glass composites simultaneously inducing a piezoresistive response. To prove this concept, E-glass fibers were coated with graphene oxide (GO) by electrophoretic deposition, while reduced graphene oxide (rGO) coated fibers were obtained by subsequent chemical reduction. The fiber-matrix interfacial shear strength measured by the single-fiber fragmentation test increased for both GO and rGO coated fibers. Unidirectional composites with a high content of both uncoated and coated fibers were produced and mechanically tested under various configurations (three-point bending, short beam shear and mode-I fracture toughness, creep). Composites with coated fibers performed similarly or better than composites prepared with uncoated fibers. Finally, composites with rGO coated fibers were tested for their piezoresistive response under both static and dynamic conditions. The electrical resistance changed proportionally to applied strain thus confirming the possibility of using composites with rGO coated fibers as strain sensors in load-bearing components.

Latest Articles:

Pelletized cellulose fibres used in twin-screw extrusion for biocomposite manufacturing: Fibre breakage and dispersion

2018-04-06

[10.1016/j.compositesa.2018.04.006]

Nonlinear hyperviscoelastic modelling of intra-ply deformation behaviour in finite element forming simulation of continuously fibre-reinforced thermoplastics

2018-04-04

[10.1016/j.compositesa.2018.03.037]

Interlayer polymerization in amine-terminated macromolecular chain-grafted expanded graphite for fabricating highly thermal conductive and physically strong thermoset composites for thermal management applications

2018-04-03

[10.1016/j.compositesa.2018.04.001]

Experimental analysis of the planar compaction and preforming of unidirectional flax reinforcements using a thin paper or flax mat as binder for the UD fibers

2018-04-03

[10.1016/j.compositesa.2018.03.036]

Reduced polyaniline decorated reduced graphene oxide/polyimide nanocomposite films with enhanced dielectric properties and thermostability

2018-04-02

[10.1016/j.compositesa.2018.03.035]

More Articles...