Composites Part A: Applied Science and Manufacturing 2018-01-06

Introducing Cryomilling for Reliable Determination of Resin Content and Degree of Cure in Structural Carbon Fibre Reinforced Thermoset Composites

Nessa Fereshteh-Saniee, Neil Reynolds, Catherine A. Kelly, Peter R. Wilson, Mike J. Jenkins, Ken N. Kendall

Index: 10.1016/j.compositesa.2018.01.004

Full Text: HTML

Abstract

A novel material preparation method is presented that facilitates accurate measurement of the degree of cure and resin content within carbon fibre reinforced polymer composites (CFRPs). When using conventional specimen preparation for standard thermal analysis, it is demonstrated that the experimentally-obtained enthalpy of reaction and resin content varies significantly between analyses. Measurement uncertainties arise because small specimen volumes are extracted from materials that exhibit both macroscopic inhomogeneity and physical discontinuities. To address this issue, representative sample volumes of aligned CFRPs were first cryogenically milled to develop a homogeneous powder before smaller specimens were extracted. The variation in obtained enthalpy of reaction between analyses was reduced from 23% (for conventional specimen extraction) to 1% following cryomilling. The accuracy in measurement of degree of cure for the compression moulding parts was improved 7 times. Further, subsequent FTIR analysis proved that cryomilling did not affect the final chemical structure of the cured material.

Latest Articles:

Pelletized cellulose fibres used in twin-screw extrusion for biocomposite manufacturing: Fibre breakage and dispersion

2018-04-06

[10.1016/j.compositesa.2018.04.006]

Nonlinear hyperviscoelastic modelling of intra-ply deformation behaviour in finite element forming simulation of continuously fibre-reinforced thermoplastics

2018-04-04

[10.1016/j.compositesa.2018.03.037]

Interlayer polymerization in amine-terminated macromolecular chain-grafted expanded graphite for fabricating highly thermal conductive and physically strong thermoset composites for thermal management applications

2018-04-03

[10.1016/j.compositesa.2018.04.001]

Experimental analysis of the planar compaction and preforming of unidirectional flax reinforcements using a thin paper or flax mat as binder for the UD fibers

2018-04-03

[10.1016/j.compositesa.2018.03.036]

Reduced polyaniline decorated reduced graphene oxide/polyimide nanocomposite films with enhanced dielectric properties and thermostability

2018-04-02

[10.1016/j.compositesa.2018.03.035]

More Articles...