Biomaterials Science 2018-01-09

A silencing-mediated enhancement of osteogenic differentiation by supramolecular ternary siRNA polyplexes comprising biocleavable cationic polyrotaxanes and anionic fusogenic peptides

Takasuke Inada, Atsushi Tamura, Masahiko Terauchi, Satoshi Yamaguchi, Nobuhiko Yui

Index: 10.1039/C7BM01100H

Full Text: HTML

Abstract

Gene silencing of noggin by small interfering RNA (siRNA) is a promising approach for the treatment of bone defects, because noggin deactivates bone morphogenetic protein-2 (BMP-2) and suppresses osteogenic differentiation. Here, we demonstrated the silencing of the noggin gene by siRNA polyplexes composed of noggin-targeted siRNA and biocleavable cationic polyrotaxanes (DMAE-SS-PRX). To improve the endosomal escape efficiencies of the DMAE-SS-PRX/siRNA polyplexes, anionic and fusogenic GALA peptides were integrated onto the DMAE-SS-PRX/siRNA polyplexes via simple electrostatic interactions. The formation of ternary complexes was confirmed by gel electrophoresis, dynamic light scattering, and zeta-potential measurements. Although the association of GALA peptides with the DMAE-SS-PRX/siRNA polyplexes did not remarkably affect the cellular uptake efficiency of siRNA, the endosomal escape efficiency was remarkably increased for GALA/DMAE-SS-PRX/siRNA ternary polyplexes because of the endosomal and lysosomal membrane destabilization by GALA peptides. Consequently, GALA/DMAE-SS-PRX/siRNA ternary polyplexes showed significantly higher gene silencing efficiency against noggin and enhanced the BMP-2-mediated osteogenic differentiation efficiency. Therefore, we concluded that GALA/DMAE-SS-PRX/siRNA ternary polyplexes can be effective siRNA carriers for suppressing the expression of specific endogenous genes. Consequently, we believe that a more practical approach in vivo will be the combined use of BMP-2 and GALA/DMAE-SS-PRX/siRNA ternary polyplexes, because it will improve the efficacy of bone regeneration therapy.

Latest Articles:

Role of Sox9 in Collagen Hydrogel-Mediated Chondrogenic Differentiation of Adult Mesenchymal Stem Cells (MSCs)

2018-04-11

[10.1039/C8BM00317C]

Designing well-defined photopolymerized synthetic matrices for three-dimensional culture and differentiation of induced pluripotent stem cells

2018-04-10

[10.1039/C8BM00099A]

Injectable self-assembled peptide hydrogels for glucose-mediated insulin delivery

2018-04-06

[10.1039/C8BM00006A]

Polytyrosine nanoparticles enable ultra-high loading of doxorubicin and rapidly enzyme-responsive drug release

2018-04-06

[10.1039/C8BM00243F]

Maintenance of the spheroid organization and properties of glandular progenitor cells by fabricated chitosan based biomaterials

2018-04-05

[10.1039/C7BM00559H]

More Articles...