Chemistry - A European Journal 2017-09-21

1-Alkali-metal-2-alkyl-1,2-dihydropyridines: soluble hydride surrogates for catalytic dehydrogenative coupling and hydroboration applications

Ross McLellan, Alan R Kennedy, Robert E. Mulvey, Samantha A Orr, Stuart D Robertson

Index: 10.1002/chem.201703609

Full Text: HTML

Abstract

Equipped with excellent hydrocarbon solubility, the lithium hydride surrogate 1-lithium-2-t-butyl-1,2-dihydropyridine (1tLi) functions as a precatalyst to convert Me₂NH·BH₃ to [NMe₂BH₂]₂ (89% conversion) under competitive conditions (2.5 mol%, 60h, 80°C, toluene solvent) to that of previously reported LiN(SiMe₃)₂. Sodium and potassium dihydropyridine congeners produce similar high yields of [NMe₂BH₂]₂ but require longer times. Switching the solvent to pyridine induces a remarkable change in the dehydrocoupling product ratio, with (NMe₂)₂BH favoured over [NMe₂BH₂]₂ (e.g., 94%:2% for 1tLi). Demonstrating its versatility, precatalyst 1tLi was also successful in promoting hydroboration reactions between pinacolborane and a selection of aldehydes and ketones. Most reactions gave near quantitative conversion to the hydroborated products in 15 minutes, though sterically demanding carbonyl substrates require longer times. The mechanisms of these rare examples of group 1 metal catalysed processes are discussed.

Latest Articles:

Subnaphthalocyanines as Electron Acceptors in Polymer Solar Cells: Improving Device Performance by Modifying Peripheral and Axial Substituents

2018-04-10

[10.1002/chem.201800596]

Formal Lossen Rearrangement/[3+2] Annulation Cascade Catalyzed by a Modified Cyclopentadienyl RhIII Complex

2018-04-10

[10.1002/chem.201801125]

A Highly Sensitive Fluorogenic Probe for Imaging Glycoproteins and Mucine Activity in Live Cells in the Near‐Infrared Region

2018-04-10

[10.1002/chem.201800790]

Improvement of Photodynamic Activity of Lipid–Membrane‐Incorporated Fullerene Derivative by Combination with a Photo‐Antenna Molecule

2018-04-06

[10.1002/chem.201800674]

Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium‐ion Battery Anodes with High Areal and Volumetric Capacity

2018-04-06

[10.1002/chem.201801099]

More Articles...