Chemistry - A European Journal 2018-04-06

Anthracene Bisureas as Powerful and Accessible Anion Carriers

Christopher M. Dias; Hennie Valkenier; Anthony P. Davis

Index: 10.1002/chem.201800508

Full Text: HTML

Abstract

Synthetic anion carriers (anionophores) have potential as biomedical research tools and as treatments for conditions arising from defective natural transport systems (notably cystic fibrosis). Highly active anionophores that are readily accessible and easily deliverable are especially valuable. Previous work has resulted in steroid and trans‐decalin based anionophores with exceptional activity for chloride/nitrate exchange in vesicles, but poor accessibility and deliverability. This work shows that anthracene 1,8‐bisureas can fulfil all three criteria. In particular, a bis‐nitrophenyl derivative is prepared in two steps from commercial starting materials, yet shows comparable transport activity to the best currently known. Moreover, unlike earlier highly active systems, it does not need to be preincorporated in test vesicles but can be introduced subsequent to vesicle formation. This transporter also shows the ability to transfer between vesicles, and is therefore uniquely effective for anion transport at low transporter loadings. The results suggest that anthracene bisureas are promising candidates for application in biological research and medicine.

Latest Articles:

Subnaphthalocyanines as Electron Acceptors in Polymer Solar Cells: Improving Device Performance by Modifying Peripheral and Axial Substituents

2018-04-10

[10.1002/chem.201800596]

Formal Lossen Rearrangement/[3+2] Annulation Cascade Catalyzed by a Modified Cyclopentadienyl RhIII Complex

2018-04-10

[10.1002/chem.201801125]

A Highly Sensitive Fluorogenic Probe for Imaging Glycoproteins and Mucine Activity in Live Cells in the Near‐Infrared Region

2018-04-10

[10.1002/chem.201800790]

Improvement of Photodynamic Activity of Lipid–Membrane‐Incorporated Fullerene Derivative by Combination with a Photo‐Antenna Molecule

2018-04-06

[10.1002/chem.201800674]

Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium‐ion Battery Anodes with High Areal and Volumetric Capacity

2018-04-06

[10.1002/chem.201801099]

More Articles...