Chemistry - A European Journal 2018-04-06

Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium‐ion Battery Anodes with High Areal and Volumetric Capacity

Tobias S. Dörr; Simon Fleischmann; Marco Zeiger; Ingrid Grobelsek; Peter W. de Oliveira; Volker Presser

Index: 10.1002/chem.201801099

Full Text: HTML

Abstract

Free‐standing, binder‐free, and conductive additive‐free mesoporous titanium dioxide/carbon hybrid electrodes were prepared from co‐assembly of a poly(isoprene)‐block‐poly(styrene)‐block‐poly(ethylene oxide) block copolymer and a titanium alkoxide. By tailoring an optimized morphology, we prepared macroscopic mechanically stable 300 μm thick monoliths that were directly employed as lithium‐ion battery electrodes. High areal mass loading of up to 26.4 mg cm−2 and a high bulk density of 0.88 g cm−3 were obtained. This resulted in a highly increased volumetric capacity of 155 mAh cm−3, compared to cast thin film electrodes. Further, the areal capacity of 4.5 mAh cm−2 represented a 9‐fold increase compared to conventionally cast electrodes. These attractive performance metrics are related to the superior electrolyte transport and shortened diffusion lengths provided by the interconnected mesoporous nature of the monolith material, assuring superior rate handling, even at high cycling rates.

Latest Articles:

Subnaphthalocyanines as Electron Acceptors in Polymer Solar Cells: Improving Device Performance by Modifying Peripheral and Axial Substituents

2018-04-10

[10.1002/chem.201800596]

Formal Lossen Rearrangement/[3+2] Annulation Cascade Catalyzed by a Modified Cyclopentadienyl RhIII Complex

2018-04-10

[10.1002/chem.201801125]

A Highly Sensitive Fluorogenic Probe for Imaging Glycoproteins and Mucine Activity in Live Cells in the Near‐Infrared Region

2018-04-10

[10.1002/chem.201800790]

Improvement of Photodynamic Activity of Lipid–Membrane‐Incorporated Fullerene Derivative by Combination with a Photo‐Antenna Molecule

2018-04-06

[10.1002/chem.201800674]

Facile Synthesis of Single α‐tert‐Alkylated Acetaldehydes by Hydroxyalkylation of Enamides in Aqueous Solution

2018-04-06

[10.1002/chem.201801065]

More Articles...