Renewable Energy 2018-03-13

Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions

Ziyi Yang, Wen Wang, Yanfeng He, Ruihong Zhang, Guangqing Liu

Index: 10.1016/j.renene.2018.03.032

Full Text: HTML

Abstract

The effects of ammonia on methane production, methanogenesis pathway, microbial community, and reactor performance were investigated in this study. More than 20% of methane production loss was observed in mesophilic and thermophilic reactors when the ammonia level exceeded 2 and 5g NH4+-N/L, respectively. The volatile fatty acid (VFA) data indicated that acetogenesis and methanogenesis are strongly influenced by ammonia inhibition under the mesophilic condition, while methanogenesis was mainly affected under thermophilic condition. No evident methanogenesis pathway shift was found in the mesophilic reactor, whereas the increase in NH4+-N concentration to more than 5 g/L led to a clear shift from aceticlastic to complex and flexible pathways, thereby significantly enriching the hydrogenotrophic pathway in the thermophilic reactor. The function and response of the microbial community to ammonia inhibition were consistent despite the difference in population and diversity under mesophilic and thermophilic conditions.

Latest Articles:

In situ, one-step and co-electrodeposition of graphene supported dendritic and spherical nano-palladium-silver bimetallic catalyst on carbon cloth for electrooxidation of methanol in alkaline media

2018-04-10

[10.1016/j.renene.2018.04.040]

Effectiveness of optimized control strategy and different hub height turbines on a real wind farm optimization

2018-04-04

[10.1016/j.renene.2018.04.004]

Quasi-Steady State Moving Boundary Reduced Order Model of Two-Phase Flow for ORC Refrigerant in Solar-Thermal Heat Exchanger

2018-04-03

[10.1016/j.renene.2018.04.008]

Span80/Tween80 stabilized bio-oil-in-diesel microemulsion: formation and combustion

2018-04-03

[10.1016/j.renene.2018.04.010]

A spatiotemporal universal model for the prediction of the global solar radiation based on Fourier series and the site altitude

2018-04-03

[10.1016/j.renene.2018.04.005]

More Articles...