Fuel Processing Technology 2018-04-11

Confinement of microporous MOF-74(Ni) within mesoporous γ-Al2O3 beads for excellent ultra-deep and selective adsorptive desulfurization performance ☆

Zipeng Zhao, Zareen Zuhra, Libo Qin, Yunshan Zhou, Lijuan Zhang, Fang Tang, Cuncun Mu

Index: 10.1016/j.fuproc.2018.03.037

Full Text: HTML

Abstract

The microporous MOF-74(Ni) was impregnated on mesoporous γ-Al2O3 beads leading to successful formation of a hierarchical multiporous composite MOF-74(Ni)@γ-Al2O3 containing 10 wt% MOF-74(Ni) via solvothermal method. The confinement effect introduced by the channels of γ-Al2O3 beads resulted in ultrathin continuous films of MOF-74(Ni) which has significantly enhanced the surface area and surface utilization rate by ca. 16%. The composite showed excellent adsorptive desulfurization in the order of dibenzothiophene (DBT) ≈ benzothiophene (BT) > 4,6-dimethyldibenzothiophene > 3-methyl thiophene and was applied efficiently for ultra-deep adsorptive desulfurization. The 35 ppmwS concentrations of DBT and BT in model oil were decreased down to 2.30 ± 0.20 and 4.28 ± 0.31 ppmwS, respectively, with high selectivity. The reason behind excellent ultradeep desulfurization and high selectivity of S-heterocycles over aromatics is utilization of available unsaturated metal and strong metal-S bonding. In addition, the high mechanical and chemical stability of millimeter-sized composite enabled the easy recyclability with excellent efficiency and high fluidity. All the above excellency shall endow the composite to apply potentially in practical (especially ultra-deep) adsorptive desulfurization process.

Latest Articles:

Understanding the unusual fluidity characteristics of high ash Indian bituminous coals

2018-04-10

[10.1016/j.fuproc.2018.04.003]

Experimental study on thermo-responsive inhibitors inhibiting coal spontaneous combustion

2018-04-09

[10.1016/j.fuproc.2018.03.019]

Modeling pyrolytic behavior of pre-oxidized lignin using four representative β-ether-type lignin-like model polymers

2018-04-06

[10.1016/j.fuproc.2018.03.041]

Biomass pellet combustion: Cavities and ash formation characterized by synchrotron X-ray micro-tomography

2018-04-05

[10.1016/j.fuproc.2018.03.023]

Rapid beneficiation of fine coal tailings using a novel agglomeration technology

2018-04-04

[10.1016/j.fuproc.2018.03.033]

More Articles...