Composites Science and Technology 2018-02-26

Advanced carbon fiber composite out-of-autoclave laminate manufacture via nanostructured out-of-oven conductive curing

Jeonyoon Lee, Xinchen Ni, Frederick Daso, Xianghui Xiao, Dale King, Jose Sánchez Gómez, Tamara Blanco Varela, Seth S. Kessler, Brian L. Wardle

Index: 10.1016/j.compscitech.2018.02.031

Full Text: HTML

Abstract

Next-generation composite manufacturing processes are needed to overcome several limitations of conventional manufacturing processes (e.g., high energy consumption). Here we explore, via experiments and modeling, the characteristics of the newly developed out-of-oven (OoO) curing technique that cures a composite laminate via resistive heating of a carbon nanotube film. When compared to oven curing of an aerospace-grade out-of-autoclave (OoA) carbon fiber prepreg advanced composite laminate, the OoO curing reduces energy consumption by over two orders of magnitude (14 vs. 0.1 MJ). Thermophysical and mechanical tests including differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), short beam shear, and ex-situ and in-situ double-edge notch tension indicate that the physical and mechanical properties of OoO-cured laminates are equivalent to those of oven-cured (baseline) laminates. In addition to energy savings, the OoO curing process has the potential to reduce part-to-part variations through improved spatiotemporal temperature control.

Latest Articles:

Microstructure evolution and self-assembling of CNT networks during mechanical stretching and mechanical properties of highly aligned CNT composites

2018-04-04

[10.1016/j.compscitech.2018.04.003]

Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites

2018-04-03

[10.1016/j.compscitech.2018.03.016]

Plasma poly(acrylic acid) compatibilized hydroxyapatite-polylactide biocomposites for their use as body-absorbable osteosynthesis devices

2018-04-03

[10.1016/j.compscitech.2018.04.001]

Study on synergistic toughening of polypropylene with high-density polyethylene and elastomer-olefin block copolymers under ultrasonic application

2018-04-03

[10.1016/j.compscitech.2018.03.044]

Dielectric response of nano aluminium tri-hydrate filled silicone rubber

2018-04-03

[10.1016/j.compscitech.2018.04.002]

More Articles...