Progress in Materials Science 2018-03-07

Progress in Corrosion Science at Atomic and Nanometric Scales

Vincent Maurice, Philippe Marcus

Index: 10.1016/j.pmatsci.2018.03.001

Full Text: HTML

Abstract

Contemporary aspects of corrosion science are reviewed to show how insightful a surface science approach is to understand the mechanisms of corrosion initiation at the atomic and nanometric scales. The review covers experimental approaches using advanced surface analytical techniques applied to single-crystal surfaces of metal and alloys exposed to corrosive aqueous environments in well-controlled conditions and analysed in situ under electrochemical control and/or ex situ by scanning tunnelling microscopy/spectroscopy, atomic force microscopy and x-ray diffraction. Complementary theoretical approaches based on atomistic modeling are also covered. The discussed aspects include the metal-water interfacial structure and the surface reconstruction induced by hydroxide adsorption and formation of 2D (hyd)oxide precursors, the structure alterations accompanying anodic dissolution processes of metals without or with 2D protective layers and selective dissolution (i.e. dealloying) of alloys, the atomic structure, orientation and surface hydroxylation of ultrathin passive films, the role of step edges at the exposed surface of oxide grains on the dissolution of passive films and the effect of grain boundaries in polycrystalline passive films acting as preferential sites of passivity breakdown, the differences in local electronic properties measured at passive films grain boundaries, and the structure of adlayers of organic inhibitor molecules.

Latest Articles:

Cuprous oxide (Cu2O) crystals with tailored architectures: A comprehensive review on synthesis, fundamental properties, functional modifications and applications

2018-03-28

[10.1016/j.pmatsci.2018.03.006]

Recent Advances in Two-dimensional Transition Metal Dichalcogenides-Graphene Heterostructured Materials for Electrochemical Applications

2018-03-17

[10.1016/j.pmatsci.2018.03.007]

Revisiting the electrical and optical transmission properties of co-doped ZnO thin films as n-type TCOs

2018-03-17

[10.1016/j.pmatsci.2018.03.004]

Kinetics of Interface Alloy Phase formation at nanometer length scale in Ultra-thin Films: X-ray and polarized neutron reflectometry

2018-03-16

[10.1016/j.pmatsci.2018.03.005]

Radiation damage in nanostructured materials

2018-03-15

[10.1016/j.pmatsci.2018.03.002]

More Articles...