Particle penetration in fiber filters
Norbert Riefler, Martina Ulrich, Marko Morshäuser, Udo Fritsching
Index: 10.1016/j.partic.2017.11.008
Full Text: HTML
Abstract
Particle separation from gases is an important unit operation in manifold industrial applications, such as those conducted in environmental protection. For analysis of particle penetration and separation in fiber filters, standard dust particles (Al2O3) were loaded in the gas flow of a filter test facility and deposited within new and uncharged fiber filters. The loaded filters were analyzed by micro-computer tomography and scanning electron microscopy. Three-dimensional tomograms of the samples show an exponential decay of the penetration depth of the particles. This dependency is confirmed by simulations conducted using the discrete element method coupled with computational fluid dynamics within unloaded and loaded fiber structures. Microscale processes of particle separation at the fibers as well as the filtration efficiency and time-dependent filtering process are derived from the simulations. Local particle clustering in the filter medium and partial filter clogging are thus identified.
Latest Articles:
2018-04-04
[10.1016/j.partic.2017.12.004]
2018-03-26
[10.1016/j.partic.2017.11.009]
2018-03-26
[10.1016/j.partic.2017.12.002]
2018-03-26
[10.1016/j.partic.2017.11.010]
2018-03-21
[10.1016/j.partic.2017.11.006]