ChemElectroChem 2018-02-16

Conserved Histidine Adjacent to the Proximal Cluster Tunes the Anaerobic Reductive Activation of Escherichia coli Membrane‐Bound [NiFe] Hydrogenase‐1

Lindsey A. Flanagan; Harriet S. Chidwick; Julia Walton; James W. B. Moir; Alison Parkin

Index: 10.1002/celc.201800047

Full Text: HTML

Abstract

[NiFe] hydrogenases are electrocatalysts that oxidize H2 at a rapid rate without the need for precious metals. All membrane‐bound [NiFe] hydrogenases (MBH) possess a histidine residue that points to the electron‐transfer iron sulfur cluster closest (“proximal”) to the [NiFe] H2‐binding active site. Replacement of this amino acid with alanine induces O2 sensitivity, and this has been attributed to the role of the histidine in enabling the reversible O2‐induced over‐oxidation of the [Fe4S3Cys2] proximal cluster possessed by all O2‐tolerant MBH. We have created an Escherichia coli Hyd‐1 His‐to‐Ala variant and report O2‐free electrochemical measurements at high potential that indicate the histidine‐mediated [Fe4S3Cys2] cluster‐opening/closing mechanism also underpins anaerobic reactivation. We validate these experiments by comparing them to the impact of an analogous His‐to‐Ala replacement in Escherichia coli Hyd‐2, a [NiFe]‐MBH that contains a [Fe4S4] center.

Latest Articles:

Hierarchical MnO2 Located on Carbon Nanotubes for Enhanced Electrochemical Performance

2018-04-17

[10.1002/celc.201701110]

Artificial Interface Derived from Diphenyl Ether Additive for High‐Voltage LiNi0.5Mn1.5O4 Cathode

2018-04-16

[10.1002/celc.201800011]

Hydrogen Bonding Effects on the Reversible Reorganization of Organic Films Electrografted on Glassy Carbon Electrodes

2018-04-14

[10.1002/celc.201800148]

In situ Synthesis of V2O3‐Intercalated N‐doped Graphene Nanobelts from VOx‐Amine Hybrid as High‐Performance Anode Material for Alkali‐Ion Batteries

2018-04-06

[10.1002/celc.201800213]

Redox‐Active Copper‐Benzotriazole Stacked Multiwalled Carbon Nanotubes for the Oxygen Reduction Reaction

2018-04-06

[10.1002/celc.201800110]

More Articles...