ChemElectroChem 2018-03-30

Reversible Delithiation of Disordered Rock Salt LiVO2

Christian Baur; Johann Chable; Franziska Klein; Venkata Sai Kiran Chakravadhanula; Maximilian Fichtner

Index: 10.1002/celc.201800189

Full Text: HTML

Abstract

A rigid crystal lattice, where cations occupy specific positions in the lattice, is generally regarded a critical requirement to enable Li+ diffusion in the bulk of conventional cathode materials, while disorder is generally considered as detrimental. Herein, we demonstrate that facile and reversible insertion and extraction of Li+ is possible with LiVO2, a new cation‐disordered rock salt compound (space group:Fm3 ̅m), which is, to the best of our knowledge, described for the first time. This new polymorph of LiVO2 is synthesized by mechanical alloying. Rietveld refinements of the X ray diffractions patterns and SAED (selected area electron diffraction) patterns attested the formation of the disordered LiVO2 rock salt phase. Galvanostatic cycling experiments were employed to characterize the electrochemical performance of the material, demonstrating that reversible cycling over 100 cycles with a discharge capacity around 100 mAh g‐1 is possible.

Latest Articles:

Hierarchical MnO2 Located on Carbon Nanotubes for Enhanced Electrochemical Performance

2018-04-17

[10.1002/celc.201701110]

Artificial Interface Derived from Diphenyl Ether Additive for High‐Voltage LiNi0.5Mn1.5O4 Cathode

2018-04-16

[10.1002/celc.201800011]

Hydrogen Bonding Effects on the Reversible Reorganization of Organic Films Electrografted on Glassy Carbon Electrodes

2018-04-14

[10.1002/celc.201800148]

In situ Synthesis of V2O3‐Intercalated N‐doped Graphene Nanobelts from VOx‐Amine Hybrid as High‐Performance Anode Material for Alkali‐Ion Batteries

2018-04-06

[10.1002/celc.201800213]

Redox‐Active Copper‐Benzotriazole Stacked Multiwalled Carbon Nanotubes for the Oxygen Reduction Reaction

2018-04-06

[10.1002/celc.201800110]

More Articles...