Chemical Physics Letters 2018-04-08

Configurational Coupled Cluster Approach with Applications to Magnetic Model Systems

Siyuan Wu, Marcel Nooijen

Index: 10.1016/j.cplett.2018.04.017

Full Text: HTML

Abstract

A general exponential, coupled cluster like, approach is discussed to extract an effective Hamiltonian in configurational space, as a sum of 1-body, 2-body up to n-body operators. The simplest two-body approach is illustrated by calculations on simple magnetic model systems. A key feature of the approach is that equations up to a certain rank do not depend on higher body cluster operators.

Latest Articles:

Performance of Kobryn-Gusarov-Kovalenko Closure from a Thermodynamic Viewpoint for One-Component Lennard-Jones Fluids

2018-04-09

[10.1016/j.cplett.2018.04.013]

Urea-assisted liquid-phase exfoliation of natural graphite into few-layer graphene

2018-04-07

[10.1016/j.cplett.2018.04.019]

Morphological Evolution of Solution-Grown Cobalt-Doped ZnO Nanostructures and Their Properties

2018-04-03

[10.1016/j.cplett.2018.04.002]

Adsorption of Cyanogen Chloride on the surface of Boron Nitride Nanotubes for CNCl sensing

2018-04-03

[10.1016/j.cplett.2018.04.001]

Broadband Two-Photon Absorption Cross Sections of Benzothiazole Derivatives and Benzobisthiazolium Salts

2018-03-31

[10.1016/j.cplett.2018.03.075]

More Articles...