ACS Catalysis 2018-04-10

Enzyme-Assisted Microbial Electrosynthesis of Poly(3-hydroxybutyrate) via CO2 Bioreduction by Engineered Ralstonia eutropha

xiaoli chen, Yingxiu Cao, Feng Li, Yao Tian, Hao Song

Index: 10.1021/acscatal.8b00226

Full Text: HTML

Abstract

Microbial electrosynthesis (MES) is a promising technology to reduce carbon dioxide using inward electron transfer mechanisms to synthesize value-added chemicals with microorganisms as electro-catalysts and electrons from cathodes as reducing equivalents. To enhance CO2 assimilation in Ralstonia eutropha, a formate dehydrogenase (FDH)-assisted MES system was constructed, in which FDH catalyzed the reduction of CO2 to formate in the cathodic chamber. Formate served as the electron carrier to transfer electrons derived from cathodes into R. eutropha. To enable efficient formation of formate from CO2, neural red (NR) was used to facilitate the extracellular regeneration of NADH, the cofactor of FDH. Meanwhile, NR also played an essential role of electron shuttle to directly deliver electrons from cathodes into R. eutropha to increase the level of intracellular reducing equivalents, thus facilitating the efficiency of MES. On the other hand, the Calvin–Benson–Bassham (CBB) cycle was further engineered by the heterologous expression of the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in R. eutropha, which dramatically strengthened the CBB pathway for CO2 fixation. Upon applying the cathode potential at -0.6 V (vs. Ag/AgCl) in the MES system with the genetically engineered R. eutropha, 485 mg/L poly(3-hydroxybutyrate) (PHB) was obtained, which was ~3 times of that synthesized by the control (165 mg/L), i.e., the wild-type R. eutropha in the absence of FDH and NR.

Latest Articles:

Iron-Catalyzed Direct Olefin Diazidation via Peroxyester Activation Promoted by Nitrogen-Based Ligands

2018-04-19

[10.1021/acscatal.8b00821]

Catalytic Dehydrogenation of (Di)Amine-Boranes with a Geometrically Constrained Phosphine-Borane Lewis Pair

2018-04-18

[10.1021/acscatal.8b00152]

Well-Defined β-Diketiminatocobalt(II) Complexes for Alkene Cyclohydroamination of Primary Amines

2018-04-18

[10.1021/acscatal.8b00631]

Isoprene Regioblock Copolymerization: Switching the Regioselectivity by the in Situ Ancillary Ligand Transmetalation of Active Yttrium Species

2018-04-18

[10.1021/acscatal.8b00600]

Low-Energy Electrocatalytic CO2 Reduction in Water over Mn-Complex Catalyst Electrode Aided by a Nanocarbon Support and K+ Cations

2018-04-18

[10.1021/acscatal.8b01068]

More Articles...