Journal of Medicinal Chemistry 2018-04-19

An Efficient Buchwald–Hartwig/Reductive Cyclization for the Scaffold Diversification of Halogenated Phenazines: Potent Antibacterial Targeting, Biofilm Eradication, and Prodrug Exploration

AaronT. Garrison, Yasmeen Abouelhassan, Dimitris Kallifidas, Hao Tan, Young S. Kim, Shouguang Jin, Hendrik Luesch, Robert W. Huigens

Index: 10.1021/acs.jmedchem.7b01903

Full Text: HTML

Abstract

Bacterial biofilms are surface-attached communities comprised of nonreplicating persister cells housed within a protective extracellular matrix. Biofilms display tolerance toward conventional antibiotics, occur in ∼80% of infections, and lead to >500000 deaths annually. We recently identified halogenated phenazine (HP) analogues which demonstrate biofilm-eradicating activities against priority pathogens; however, the synthesis of phenazines presents limitations. Herein, we report a refined HP synthesis which expedited the identification of improved biofilm-eradicating agents. 1-Methoxyphenazine scaffolds were generated through a Buchwald–Hartwig cross-coupling (70% average yield) and subsequent reductive cyclization (68% average yield), expediting the discovery of potent biofilm-eradicating HPs (e.g., 61: MRSA BAA-1707 MBEC = 4.69 μM). We also developed bacterial-selective prodrugs (reductively activated quinone-alkyloxycarbonyloxymethyl moiety) to afford HP 87, which demonstrated excellent antibacterial and biofilm eradication activities against MRSA BAA-1707 (MIC = 0.15 μM, MBEC = 12.5 μM). Furthermore, active HPs herein exhibit negligible cytotoxic or hemolytic effects, highlighting their potential to target biofilms.

Latest Articles:

An 18F-Labeled Poly(ADP-ribose) Polymerase Positron Emission Tomography Imaging Agent

2018-04-19

[10.1021/acs.jmedchem.8b00138]

Synthetic Approaches to New Drugs Approved During 2016

2018-04-19

[10.1021/acs.jmedchem.8b00260]

Hydroxamic Acids Constitute a Novel Class of Autotaxin Inhibitors that Exhibit in Vivo Efficacy in a Pulmonary Fibrosis Model

2018-04-18

[10.1021/acs.jmedchem.8b00232]

New Inhibitors of Breast Cancer Resistance Protein (ABCG2) Containing a 2,4-Disubstituted Pyridopyrimidine Scaffold

2018-04-18

[10.1021/acs.jmedchem.7b01012]

Computer-Aided Discovery and Characterization of Novel Ebola Virus Inhibitors

2018-04-17

[10.1021/acs.jmedchem.8b00035]

More Articles...