ACS Chemical Biology 2018-03-15

DNA Polymerase θ Increases Mutational Rates in Mitochondrial DNA

Simon Wisnovsky, Tanja Sack, David J. Pagliarini, Rebecca R. Laposa, Shana O. Kelley

Index: 10.1021/acschembio.8b00072

Full Text: HTML

Abstract

Replication and maintenance of mitochondrial DNA (mtDNA) is essential for cellular function, yet few DNA polymerases are known to function in mitochondria. Here, we conclusively demonstrate that DNA polymerase θ (Polθ) localizes to mitochondria and explore whether this protein is overexpressed in patient-derived cells and tumors. Polθ appears to play an important role in facilitating mtDNA replication under conditions of oxidative stress, and this error-prone polymerase was found to introduce mutations into mtDNA. In patient-derived cells bearing a pathogenic mtDNA mutation, Polθ expression levels were increased, indicating that the oxidative conditions in these cells promote higher expression levels for Polθ. Heightened Polθ expression levels were also associated with elevated mtDNA mutation rates in a selected panel of human tumor tissues, suggesting that this protein can influence mutational frequencies in tumors. The results reported indicate that the mitochondrial function of Polθ may have relevance to human disease.

Latest Articles:

Crystallographic Trapping of Reaction Intermediates in Quinolinic Acid Synthesis by NadA

2018-04-19

[10.1021/acschembio.7b01104]

Substrate Recognition by a Colistin Resistance Enzyme from Moraxella catarrhalis

2018-04-19

[10.1021/acschembio.8b00116]

Identification of the First Diketomorpholine Biosynthetic Pathway Using FAC-MS Technology

2018-04-17

[10.1021/acschembio.8b00024]

Dynamics, Conformational Entropy, and Frustration in Protein–Protein Interactions Involving an Intrinsically Disordered Protein Domain

2018-04-16

[10.1021/acschembio.7b01105]

O-GlcNAcase fragment discovery with fluorescence polarimetry

2018-04-11

[10.1021/acschembio.8b00183]

More Articles...