PLoS Neglected Tropical Diseases 2015-01-01

Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances Killing of Filarial Worms.

Andrea M Binnebose, Shannon L Haughney, Richard Martin, Paula M Imerman, Balaji Narasimhan, Bryan H Bellaire

Index: PLoS Negl. Trop. Dis. 9 , e0004173, (2015)

Full Text: HTML

Abstract

Filarial diseases represent a significant social and economic burden to over 120 million people worldwide and are caused by endoparasites that require the presence of symbiotic bacteria of the genus Wolbachia for fertility and viability of the host parasite. Targeting Wolbachia for elimination is a therapeutic approach that shows promise in the treatment of onchocerciasis and lymphatic filariasis. Here we demonstrate the use of a biodegradable polyanhydride nanoparticle-based platform for the co-delivery of the antibiotic doxycycline with the antiparasitic drug, ivermectin, to reduce microfilarial burden and rapidly kill adult worms. When doxycycline and ivermectin were co-delivered within polyanhydride nanoparticles, effective killing of adult female Brugia malayi filarial worms was achieved with approximately 4,000-fold reduction in the amount of drug used. Additionally the time to death of the macrofilaria was also significantly reduced (five-fold) when the anti-filarial drug cocktail was delivered within polyanhydride nanoparticles. We hypothesize that the mechanism behind this dramatically enhanced killing of the macrofilaria is the ability of the polyanhydride nanoparticles to behave as a Trojan horse and penetrate the cuticle, bypassing excretory pumps of B. malayi, and effectively deliver drug directly to both the worm and Wolbachia at high enough microenvironmental concentrations to cause death. These provocative findings may have significant consequences for the reduction in the amount of drug and the length of treatment required for filarial infections in terms of patient compliance and reduced cost of treatment.


Related Compounds

  • Sulfuric acid
  • Pentane
  • Chloroform
  • Sodium hydroxide
  • Acetone
  • Diethyl ether
  • Acetonitrile
  • Salicylic acid
  • Potassium carbonat...
  • N,N-Dimethylforma...

Related Articles:

Evaluation of the immune response and protective efficacy of Schistosoma mansoni Cathepsin B in mice using CpG dinucleotides as adjuvant.

2015-01-03

[Vaccine 33(2) , 346-53, (2014)]

Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions.

2014-01-01

[BMC Biotechnol. 14 , 962, (2015)]

Process development for scum to biodiesel conversion.

2015-06-01

[Bioresour. Technol. 185 , 185-93, (2015)]

Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum, from biodiesel-derived waste glycerol.

2015-06-01

[Bioresour. Technol. 185 , 49-55, (2015)]

Investigation of the interactions between the EphB2 receptor and SNEW peptide variants.

2014-12-01

[Growth Factors 32(6) , 236-46, (2014)]

More Articles...