Cellular Signalling 2015-02-01

MiR-16 targets Bcl-2 in paclitaxel-resistant lung cancer cells and overexpression of miR-16 along with miR-17 causes unprecedented sensitivity by simultaneously modulating autophagy and apoptosis.

Abhisek Chatterjee, Dhrubajyoti Chattopadhyay, Gopal Chakrabarti

Index: Cell. Signal. 27(2) , 189-203, (2014)

Full Text: HTML

Abstract

Non-small cell lung cancer is one of the most aggressive cancers as per as the mortality and occurrence is concerned. Paclitaxel based chemotherapeutic regimes are now used as an important option for the treatment of lung cancer. However, resistance of lung cancer cells to paclitaxel continues to be a major clinical problem nowadays. Despite impressive initial clinical response, most of the patients eventually develop some degree of paclitaxel resistance in the course of treatment. Previously, utilizing miRNA arrays we reported that downregulation of miR-17 is at least partly involved in the development of paclitaxel resistance in lung cancer cells by modulating Beclin-1 expression [1]. In this study, we showed that miR-16 was also significantly downregulated in paclitaxel resistant lung cancer cells. We demonstrated that anti-apoptotic protein Bcl-2 was directly targeted miR-16 in paclitaxel resistant lung cancer cells. Moreover, in this report we showed that the combined overexpression of miR-16 and miR-17 and subsequent paclitaxel treatment greatly sensitized paclitaxel resistant lung cancer cells to paclitaxel by inducing apoptosis via caspase-3 mediated pathway. Combined overexpression of miR-16 and miR-17 greatly reduced Beclin-1 and Bcl-2 expressions respectively. Our results indicated that though miR-17 and miR-16 had no common target, both miR-16 and miR-17 jointly played roles in the development of paclitaxel resistance in lung cancer. miR-17 overexpression reduced cytoprotective autophagy by targeting Beclin-1, whereas overexpression of miR-16 potentiated paclitaxel induced apoptotic cell death by inhibiting anti-apoptotic protein Bcl-2. Copyright © 2014 Elsevier Inc. All rights reserved.


Related Compounds

  • Sodium Fluoride
  • Ethanol
  • Acridine Orange h...
  • sodium dodecyl sul...
  • L-Glutamine
  • Okadaic acid
  • Sodium citrate
  • DL-Glyceraldehyde...
  • Ethylenediaminetet...
  • DL-Dithiothreitol

Related Articles:

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Immunomodulation by the Pseudomonas syringae HopZ type III effector family in Arabidopsis.

2014-01-01

[PLoS ONE 9(12) , e116152, (2014)]

Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy.

2015-05-01

[Biomaterials 51 , 1-11, (2015)]

Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells.

2015-04-01

[J. Pineal Res. 58(3) , 310-20, (2015)]

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

2015-04-22

[J. Ethnopharmacol. 164 , 265-72, (2015)]

More Articles...