The International Journal of Biochemistry & Cell Biology 2015-11-01

Uncovering a new role for peroxidase enzymes as drivers of angiogenesis.

Vasilios Panagopoulos, Irene Zinonos, Damien A Leach, Shelley J Hay, Vasilios Liapis, Aneta Zysk, Wendy V Ingman, Mark O DeNichilo, Andreas Evdokiou

Index: Int. J. Biochem. Cell Biol. 68 , 128-38, (2015)

Full Text: HTML

Abstract

Peroxidases are heme-containing enzymes released by activated immune cells at sites of inflammation. To-date their functional role in human health has mainly been limited to providing a mechanism for oxidative defence against invading bacteria and other pathogenic microorganisms. Our laboratory has recently identified a new functional role for peroxidase enzymes in stimulating fibroblast migration and collagen biosynthesis, offering a new insight into the causative association between inflammation and the pro-fibrogenic events that mediate tissue repair and regeneration. Peroxidases are found at elevated levels within and near blood vessels however, their direct involvement in angiogenesis has never been reported. Here we report for the first time that myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are readily internalised by human umbilical vein endothelial cells (HUVEC) where they promote cellular proliferation, migration, invasion, and stimulate angiogenesis both in vitro and in vivo. These pro-angiogenic effects were attenuated using the specific peroxidase inhibitor 4-ABAH, indicating the enzyme's catalytic activity is essential in mediating this response. Mechanistically, we provide evidence that MPO and EPO regulate endothelial FAK, Akt, p38 MAPK, ERK1/2 phosphorylation and stabilisation of HIF-2α, culminating in transcriptional regulation of key angiogenesis pathways. These findings uncover for the first time an important and previously unsuspected role for peroxidases as drivers of angiogenesis, and suggest that peroxidase inhibitors may have therapeutic potential for the treatment of angiogenesis related diseases driven by inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.


Related Compounds

  • Sodium Fluoride
  • Bis-tris methane
  • H-Dab.HCl
  • ZMVR DZ
  • HUMAN VEGF165

Related Articles:

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Immunomodulation by the Pseudomonas syringae HopZ type III effector family in Arabidopsis.

2014-01-01

[PLoS ONE 9(12) , e116152, (2014)]

Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy.

2015-05-01

[Biomaterials 51 , 1-11, (2015)]

Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells.

2015-04-01

[J. Pineal Res. 58(3) , 310-20, (2015)]

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

2015-04-22

[J. Ethnopharmacol. 164 , 265-72, (2015)]

More Articles...