Journal of Leukocyte Biology 2015-12-01

Toll-like receptor 4-interacting SPA4 peptide suppresses the NLRP3 inflammasome in response to LPS and ATP stimuli.

Vijay Ramani, Shanjana Awasthi

Index: J. Leukoc. Biol. 98 , 1037-48, (2015)

Full Text: HTML

Abstract

Inflammation is induced because of interplay among multiple signaling pathways and molecules during infectious and noninfectious tissue injuries. Crosstalk between Toll-like receptor-4 signaling and the neuronal apoptosis inhibitor protein, major histocompatibility class 2 transcription activator, incompatibility locus protein from Podospora anserina, and telomerase-associated protein (NACHT), leucine-rich repeat (LRR), and pyrin domain-containing protein 3 (NLRP3) inflammasome against pathogen- or damage-associated molecular patterns can cause exaggerated inflammation. We previously established that the Toll-like receptor-4-interacting SPA4 peptide suppresses gram-negative bacterial lipopolysaccharide (Toll-like receptor-4 ligand)-induced nuclear factor-κB and inflammatory response. In the present study, we hypothesized that the SPA4 peptide exerts its anti-inflammatory effects by suppressing the crosstalk between Toll-like receptor-4 signaling and the NLRP3 inflammasome. We evaluated binding of the lipopolysaccharide-ligand to cell-surface Toll-like receptor-4 in the presence or absence of adenosine triphosphate (an NLRP3 inflammasome inducer) by flow cytometry. The expression and activity of NLRP3 inflammasome-related parameters were studied in cells challenged with lipopolysaccharide and adenosine triphosphate using molecular and immunologic methods. The cells were challenged with lipopolysaccharide and treated with SPA4 peptide before (pre-adenosine triphosphate) or after (post-adenosine triphosphate) secondary challenge with adenosine triphosphate. Our data demonstrate that the Toll-like receptor-4-interacting SPA4 peptide does not affect the binding of lipopolysaccharide to Toll-like receptor-4 in the presence or absence of adenosine triphosphate. We also found that the SPA4 peptide inhibits mRNA and cellular protein levels of pro-interleukin-1β and NLRP3, formation of the NLRP3 inflammasome, caspase activity, and release of interleukin-1β. Furthermore, the SPA4 peptide treatment reduced the secreted levels of interleukin-1β from cells overexpressing Toll-like receptor-4 compared with cells expressing the dominant-negative form of Toll-like receptor-4. Together our results suggest that the SPA4 peptide exerts its anti-inflammatory activity by suppressing Toll-like receptor-4-priming of the NLRP3 inflammasome. © Society for Leukocyte Biology.


Related Compounds

  • Sodium Fluoride
  • sodium chloride
  • sodium dodecyl sul...
  • HEPES
  • Sodium deoxycholat...
  • SODIUM CHLOR...
  • Sodium orthovanada...
  • Glibenclamide
  • DL-Dithiothreitol
  • Ethylenediaminetet...

Related Articles:

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Immunomodulation by the Pseudomonas syringae HopZ type III effector family in Arabidopsis.

2014-01-01

[PLoS ONE 9(12) , e116152, (2014)]

Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy.

2015-05-01

[Biomaterials 51 , 1-11, (2015)]

Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells.

2015-04-01

[J. Pineal Res. 58(3) , 310-20, (2015)]

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

2015-04-22

[J. Ethnopharmacol. 164 , 265-72, (2015)]

More Articles...