Biochemistry (Washington) 2015-03-03

A role for catalase-peroxidase large loop 2 revealed by deletion mutagenesis: control of active site water and ferric enzyme reactivity.

Shalley N Kudalkar, Olive J Njuma, Yongjiang Li, Michelle Muldowney, N Rene Fuanta, Douglas C Goodwin

Index: Biochemistry 54(8) , 1648-62, (2015)

Full Text: HTML

Abstract

Catalase-peroxidases (KatGs), the only catalase-active members of their superfamily, all possess a 35-residue interhelical loop called large loop 2 (LL2). It is essential for catalase activity, but little is known about its contribution to KatG function. LL2 shows weak sequence conservation; however, its length is nearly identical across KatGs, and its apex invariably makes contact with the KatG-unique C-terminal domain. We used site-directed and deletion mutagenesis to interrogate the role of LL2 and its interaction with the C-terminal domain in KatG structure and catalysis. Single and double substitutions of the LL2 apex had little impact on the active site heme [by magnetic circular dichroism or electron paramagnetic resonance (EPR)] and activity (catalase or peroxidase). Conversely, deletion of a single amino acid from the LL2 apex reduced catalase activity by 80%. Deletion of two or more apex amino acids or all of LL2 diminished catalase activity by 300-fold. Peroxide-dependent but not electron donor-dependent kcat/KM values for deletion variant peroxidase activity were reduced 20-200-fold, and kon for cyanide binding diminished by 3 orders of magnitude. EPR spectra for deletion variants were all consistent with an increase in the level of pentacoordinate high-spin heme at the expense of hexacoordinate high-spin states. Together, these data suggest a shift in the distribution of active site waters, altering the reactivity of the ferric state, toward, among other things, compound I formation. These results identify the importance of LL2 length conservation for maintaining an intersubunit interaction that is essential for an active site water distribution that facilitates KatG catalytic activity.


Related Compounds

  • Sodium acetate
  • Sodium dithionite
  • sodium chloride
  • Imidazole
  • Hydrogen peroxide
  • Chloramphenicol
  • acetic acid
  • SODIUM CHLOR...
  • Hemin
  • Ampicillin Trihyd...

Related Articles:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus.

2015-04-01

[Appl. Environ. Microbiol. 81(7) , 2274-83, (2015)]

H4 histamine receptors inhibit steroidogenesis and proliferation in Leydig cells.

2014-12-01

[J. Endocrinol. 223(3) , 241-53, (2014)]

Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin.

2014-12-29

[Small 10(24) , 5126-36, (2014)]

Decreased lipogenesis in white adipose tissue contributes to the resistance to high fat diet-induced obesity in phosphatidylethanolamine N-methyltransferase-deficient mice.

2014-10-01

[Biochim. Biophys. Acta 1851(2) , 152-62, (2015)]

More Articles...