Investigation on Spin Dependent Transport Properties of Core-Shell Structural Fe₃O₄/ZnS Nanocomposites for Spintronic Application.
Er Liu, Honglei Yuan, Zhaoxia Kou, Xiumei Wu, Qingyu Xu, Ya Zhai, Yunxia Sui, Biao You, Jun Du, Hongru Zhai
Index: Sci. Rep. 5 , 11164, (2015)
Full Text: HTML
Abstract
The core-shell structural Fe3O4/ZnS nanocomposites with controllable shell thickness were well-fabricated via seed-mediate growth method. Structural and morphological characterizations reveal the direct deposition of crystalline II-VI compound semiconductor ZnS shell layer on Fe3O4 particles. Spin dependent electrical transport is studied on Fe3O4/ZnS nanocomposites with different shell thickness, and a large magnetoresistance (MR) ratio is observed under the magnetic field of 1.0 T at room temperature and 100 K for the compacted sample by Fe3O4/ZnS nanocomposites, which is 50% larger than that of sample with pure Fe3O4 particles, indicating that the enhanced MR is contributed from the spin injection between Fe3O4 and ZnS layer.
Related Compounds
Related Articles:
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-01
[Appl. Environ. Microbiol. 81(7) , 2274-83, (2015)]
2014-12-01
[J. Endocrinol. 223(3) , 241-53, (2014)]
2014-12-29
[Small 10(24) , 5126-36, (2014)]
2014-10-01
[Biochim. Biophys. Acta 1851(2) , 152-62, (2015)]