Adriamycin-induced nephropathy in rats: functional and cellular effects characterized by MRI.
Christine Egger, Catherine Cannet, Christelle Gérard, Corinne Debon, Nadine Stohler, Andrew Dunbar, Bruno Tigani, Jianping Li, Nicolau Beckmann
Index: J. Magn. Reson. Imaging 41(3) , 829-40, (2015)
Full Text: HTML
Abstract
To assess with magnetic resonance imaging (MRI) adriamycin-induced nephropathy in living rats, an established model for proteinuric renal disease was used.Functional information of contrast agent clearance was obtained with dynamic contrast-enhanced (DCE) imaging following intravenous Gd-DOTA administration. Perfusion data were obtained with a bolus tracking technique comprising intravenous injection of superparamagnetic iron oxide (SPIO) nanoparticles. Cellular information was derived from anatomical images acquired 24 hours after SPIO. Treatment with the transforming growth factor-β123 (TGF-β1,2,3 ) antibody, 1D11, started 1 week after adriamycin. Histology was performed at week 6 post-adriamycin.Tracer washout rates derived by DCE-MRI decreased by 65.5% with respect to baseline at week 6 post-adriamycin. The impaired kidney function agreed with glomerulopathy, nephropathy and fibrosis revealed histologically (picrosirius collagen staining in adriamycin-treated rats increased by 125.8% [P = 0.005] with respect to controls). Perfusion was reduced by 16.1%. Images acquired 24 hours after SPIO presented contrast changes that correlated inversely with the histologically determined iron content (R = -0.74, P = 2.6 × 10(-4) ). In adriamycin-challenged animals, iron was found in macrophages and in sclerotic tubuli, only in areas where macrophages were present. Treatment with 1D11 did not improve the adriamycin-induced renal injury.MRI provides longitudinal functional and cellular (macrophage infiltration) information that correlates with nephropathy development in adriamycin-challenged rats.© 2014 Wiley Periodicals, Inc.
Related Compounds
Related Articles:
2014-01-01
[Protein Pept. Lett. 21(11) , 1163-75, (2014)]
2014-08-01
[Anal. Bioanal. Chem 406(20) , 4851-9, (2014)]
2014-08-15
[J. Bacteriol. 196(16) , 3045-57, (2014)]
2014-09-15
[J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 967 , 134-8, (2014)]
2016-01-01
[Bioresour. Technol. 200 , 624-30, (2015)]