Influence of the metal work function on the photocatalytic properties of TiO2 layers on metals.
Janna Freitag, Detlef W Bahnemann
Index: ChemPhysChem 16 , 2670-9, (2015)
Full Text: HTML
Abstract
The photocatalytic properties of titanium dioxide (TiO2 ) layers on different metal plates are investigated. The metal-semiconductor interface can be described as a Schottky contact, and is part of a depletion layer for the majority carriers in the semiconductor. Many researchers have demonstrated an increase in the photocatalytic activity, due to the formation of a metal-semiconductor contact that are obtained by deposition of small metal islands on the semiconductor. Nevertheless, the influence of a Schottky contact remains uncertain, sparking much interest in this field. The immobilization of nanoparticulate TiO2 layers by dip-coating on different metal substrates results in the formation of a Schottky contact. The recombination rate of photoinduced electron-hole pairs decreases at this interface provided that the thickness of the thin TiO2 layer has a similar magnitude to the depletion layer. The degradation of dichloroacetic acid in aqueous solution and of acetaldehyde in a gas mixture is investigated to obtain information concerning the influence of the metal work function of the back contact on the efficiency of the photocatalytic process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Related Compounds
Related Articles:
2014-08-22
[J. Chromatogr. A. 1356 , 105-16, (2014)]
2014-08-01
[J. Am. Soc. Mass Spectrom. 25(8) , 1421-40, (2014)]
2015-04-01
[Chronobiol. Int. 32(3) , 416-27, (2015)]
2014-01-01
[Microbes Infect. 16(1) , 51-60, (2014)]
2015-03-01
[Pharm. Biol. 53(3) , 386-94, (2015)]