Pediatric Research 2011-12-01

Amino acid metabolism in the human fetus at term: leucine, valine, and methionine kinetics.

Chris H P van den Akker, Henk Schierbeek, Gardi Minderman, Andras Vermes, Ernst M Schoonderwaldt, Johannes J Duvekot, Eric A P Steegers, Johannes B van Goudoever

Index: Pediatr. Res. 70(6) , 566-71, (2011)

Full Text: HTML

Abstract

Human fetal metabolism is largely unexplored. Understanding how a healthy fetus achieves its fast growth rates could eventually play a pivotal role in improving future nutritional strategies for premature infants. To quantify specific fetal amino acid kinetics, eight healthy pregnant women received before elective cesarean section at term, continuous stable isotope infusions of the essential amino acids [1-13C,15N]leucine, [U-13C5]valine, and [1-13C]methionine. Umbilical blood was collected after birth and analyzed for enrichments and concentrations using mass spectrometry techniques. Fetuses showed considerable leucine, valine, and methionine uptake and high turnover rates. α-Ketoisocaproate, but not α-ketoisovalerate (the leucine and valine ketoacids, respectively), was transported at net rate from the fetus to the placenta. Especially, leucine and valine data suggested high oxidation rates, up to half of net uptake. This was supported by relatively low α-ketoisocaproate reamination rates to leucine. Our data suggest high protein breakdown and synthesis rates, comparable with, or even slightly higher than in premature infants. The relatively large uptakes of total leucine and valine carbon also suggest high fetal oxidation rates of these essential branched chain amino acids.


Related Compounds

  • Ketoleucine
  • Sodium 3-methyl-2-...
  • Sodium 4-methyl-2-...

Related Articles:

Physiology and pathophysiology of organic acids in cerebrospinal fluid.

1993-01-01

[J. Inherit. Metab. Dis. 16(4) , 648-69, (1993)]

The signalling role of action potential depolarization in insulin secretion: metabolism-dependent dissociation between action potential increase and secretion increase by TEA.

2010-07-01

[Biochem. Pharmacol. 80(1) , 104-12, (2010)]

Production of α-ketoisocaproate via free-whole-cell biotransformation byRhodococcus opacusDSM 43250 withl-leucine as the substrate

2011-01-01

[Enzyme Microb. Technol. 49(4) , 321-5, (2011)]

Atomic-resolution structure of an N5 flavin adduct in D-arginine dehydrogenase.

2011-07-26

[Biochemistry 50(29) , 6292-4, (2011)]

Nitric oxide (NO)--production and regulation of insulin secretion in islets of freely fed and fasted mice.

2012-02-10

[Regul. Pept. 174(1-3) , 32-7, (2012)]

More Articles...