Anticancer Research 2015-01-01

Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling.

Seyung S Chung, Jaydutt V Vadgama

Index: Anticancer Res. 35(1) , 39-46, (2015)

Full Text: HTML

Abstract

The cancer stem cell (CSC) model postulates the existence of a small proportion of cancer cells capable of sustaining tumor formation, self-renewal and differentiation. Signal Transducer and Activator of Transcription 3 (STAT3) signaling is known to be selectively activated in breast CSC populations. However, it is yet to be determined which molecular mechanisms regulate STAT3 signaling in CSCs and what chemopreventive agents are effective for suppressing CSC growth. The aim of this study was to examine the potential efficacy of curcumin and epigallocatechin gallate (EGCG) against CSC and to uncover the molecular mechanisms of their anticancer effects.To suppress the CSC phenotype, two breast cancer cell lines (MDA-MB-231 cells and MCF7 cells transfected with HER2) were treated with curcumin (10 μM) with or without EGCG (10 μM) for 48 h. We used tumor-sphere formation and wound-healing assays to determine CSC phenotype. To quantify CSC populations, Fluorescence-activated cell sorting profiling was monitored. STAT3 phosphorylation and interaction with Nuclear Factor-kB (NFkB) were analyzed by performing western blot and immunoprecipitation assays.Combined curcumin and EGCG treatment reduced the cancer stem-like Cluster of differentiation 44 (CD44)-positive cell population. Western blot and immunoprecipitation analyses revealed that curcumin and EGCG specifically inhibited STAT3 phosphorylation and STAT3-NFkB interaction was retained.This study suggests that curcumin and EGCG function as antitumor agents for suppressing breast CSCs. STAT3 and NFκB signaling pathways could serve as targets for reducing CSCs leading to novel targeted-therapy for treating breast cancer.Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.


Related Compounds

  • Curcumin
  • Epicatechin
  • (-)-Epigallocatech...
  • Catechin

Related Articles:

Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release.

2014-11-01

[J. Pharm. Sci. 103(11) , 3764-71, (2014)]

Enhancing the anti-inflammatory activity of chalcones by tuning the Michael acceptor site.

2015-03-14

[Org. Biomol. Chem. 13(10) , 3040-7, (2015)]

An antifungal mechanism of curcumin lies in membrane-targeted action within Candida albicans.

2014-11-01

[IUBMB Life 66(11) , 780-5, (2015)]

Identification of the cellular mechanisms that modulate trafficking of frizzled family receptor 4 (FZD4) missense mutants associated with familial exudative vitreoretinopathy.

2014-06-01

[Invest. Ophthalmol. Vis. Sci. 55(6) , 3423-31, (2014)]

Improved plasma membrane expression of the trafficking defective P344R mutant of muscle, skeletal, receptor tyrosine kinase (MuSK) causing congenital myasthenic syndrome.

2015-03-01

[Int. J. Biochem. Cell Biol. 60 , 119-29, (2015)]

More Articles...