Toxicology and Applied Pharmacology 2015-02-01

Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats.

Kahkashan Rashid, Parames C Sil

Index: Toxicol. Appl. Pharmacol. 282(3) , 297-310, (2015)

Full Text: HTML

Abstract

The phytochemical, curcumin, has been reported to play many beneficial roles. However, under diabetic conditions, the detail mechanism of its beneficial action in the glucose homeostasis regulatory organ, pancreas, is poorly understood. The present study has been designed and carried out to explore the role of curcumin in the pancreatic tissue of STZ induced and cellular stress mediated diabetes in eight weeks old male Wistar rats. Diabetes was induced with a single intraperitoneal dose of STZ (65 mg/kg body weight). Post to diabetes induction, animals were treated with curcumin at a dose of 100 mg/kg body weight for eight weeks. Underlying molecular and cellular mechanism was determined using various biochemical assays, DNA fragmentation, FACS, histology, immunoblotting and ELISA. Treatment with curcumin reduced blood glucose level, increased plasma insulin and mitigated oxidative stress related markers. In vivo and in vitro experimental results revealed increased levels of proinflammatory cytokines (TNF-α, IL1-β and IFN-γ), reduced level of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2) along with enhanced levels of signaling molecules of ER stress dependent and independent apoptosis (cleaved Caspase-12/9/8/3) in STZ administered group. Treatment with curcumin ameliorated all the adverse changes and helps the organ back to its normal physiology. Results suggest that curcumin protects pancreatic beta-cells by attenuating inflammatory responses, and inhibiting ER/mitochondrial dependent and independent pathways of apoptosis and crosstalk between them. This uniqueness and absence of any detectable adverse effect proposes the possibility of using this molecule as an effective protector in the cellular stress mediated diabetes mellitus.Copyright © 2014 Elsevier Inc. All rights reserved.


Related Compounds

  • Curcumin
  • Fluo-3

Related Articles:

Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release.

2014-11-01

[J. Pharm. Sci. 103(11) , 3764-71, (2014)]

Enhancing the anti-inflammatory activity of chalcones by tuning the Michael acceptor site.

2015-03-14

[Org. Biomol. Chem. 13(10) , 3040-7, (2015)]

An antifungal mechanism of curcumin lies in membrane-targeted action within Candida albicans.

2014-11-01

[IUBMB Life 66(11) , 780-5, (2015)]

Identification of the cellular mechanisms that modulate trafficking of frizzled family receptor 4 (FZD4) missense mutants associated with familial exudative vitreoretinopathy.

2014-06-01

[Invest. Ophthalmol. Vis. Sci. 55(6) , 3423-31, (2014)]

Improved plasma membrane expression of the trafficking defective P344R mutant of muscle, skeletal, receptor tyrosine kinase (MuSK) causing congenital myasthenic syndrome.

2015-03-01

[Int. J. Biochem. Cell Biol. 60 , 119-29, (2015)]

More Articles...