Journal of Chromatography B 2015-04-15

Liquid-liquid extraction and liquid chromatography-mass spectrometry detection of curcuminoids from bacterial culture medium.

Suryani Tan, Thusitha W T Rupasinghe, Dedreia L Tull, Mary Ann Augustin, Sally L Gras

Index: J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 988 , 116-20, (2015)

Full Text: HTML

Abstract

Liquid chromatography-mass spectrometry (LC-MS) has been used to detect polyphenolic curcuminoids found in turmeric but studies of metabolism by bacterial and mammalian cells in vitro are compromised by poor recovery from the culture medium. We report a liquid-liquid extraction procedure with ethyl acetate and use LC-MS to quantify extracted curcuminoids. Ethyl acetate allows recoveries of ∼ 80-86% of curcuminoids from the bacterial growth medium, bacterial cell lysate and combined bacterial cell and growth medium matrices; a clear improvement over acetonitrile where recoveries were ∼ 25-66%. This optimised method will enable studies of curcuminoid metabolism and may be applicable to other hydrophobic polyphenolic compounds.Copyright © 2015 Elsevier B.V. All rights reserved.


Related Compounds

  • Curcumin
  • sodium chloride
  • Acetonitrile
  • Methanol
  • ethyl acetate
  • L-leucine
  • SODIUM CHLOR...
  • 2-Amino-4-methylpe...

Related Articles:

Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release.

2014-11-01

[J. Pharm. Sci. 103(11) , 3764-71, (2014)]

Enhancing the anti-inflammatory activity of chalcones by tuning the Michael acceptor site.

2015-03-14

[Org. Biomol. Chem. 13(10) , 3040-7, (2015)]

An antifungal mechanism of curcumin lies in membrane-targeted action within Candida albicans.

2014-11-01

[IUBMB Life 66(11) , 780-5, (2015)]

Identification of the cellular mechanisms that modulate trafficking of frizzled family receptor 4 (FZD4) missense mutants associated with familial exudative vitreoretinopathy.

2014-06-01

[Invest. Ophthalmol. Vis. Sci. 55(6) , 3423-31, (2014)]

Improved plasma membrane expression of the trafficking defective P344R mutant of muscle, skeletal, receptor tyrosine kinase (MuSK) causing congenital myasthenic syndrome.

2015-03-01

[Int. J. Biochem. Cell Biol. 60 , 119-29, (2015)]

More Articles...