Biological Chemistry 2016-01-01

IsoQC (QPCTL) knock-out mice suggest differential substrate conversion by glutaminyl cyclase isoenzymes.

Andreas Becker, Rico Eichentopf, Reinhard Sedlmeier, Alexander Waniek, Holger Cynis, Birgit Koch, Anett Stephan, Christoph Bäuscher, Stephanie Kohlmann, Torsten Hoffmann, Astrid Kehlen, Sabine Berg, Ernst-Joachim Freyse, Alexander Osmand, Anne-Christine Plank, Steffen Roßner, Stephan von Hörsten, Sigrid Graubner, Hans-Ulrich Demuth, Stephan Schilling

Index: Biol. Chem. 397 , 45-55, (2015)

Full Text: HTML

Abstract

Secretory peptides and proteins are frequently modified by pyroglutamic acid (pE, pGlu) at their N-terminus. This modification is catalyzed by the glutaminyl cyclases QC and isoQC. Here, we decipher the roles of the isoenzymes by characterization of IsoQC-/- mice. These mice show a significant reduction of glutaminyl cyclase activity in brain and peripheral tissue, suggesting ubiquitous expression of the isoQC enzyme. An assay of substrate conversion in vivo reveals impaired generation of the pGlu-modified C-C chemokine ligand 2 (CCL2, MCP-1) in isoQC-/- mice. The pGlu-formation was also impaired in primary neurons, which express significant levels of QC. Interestingly, however, the formation of the neuropeptide hormone thyrotropin-releasing hormone (TRH), assessed by immunohistochemistry and hormonal analysis of hypothalamic-pituitary-thyroid axis, was not affected in isoQC-/-, which contrasts to QC-/-. Thus, the results reveal differential functions of isoQC and QC in the formation of the pGlu-peptides CCL2 and TRH. Substrates requiring extensive prohormone processing in secretory granules, such as TRH, are primarily converted by QC. In contrast, protein substrates such as CCL2 appear to be primarily converted by isoQC. The results provide a new example, how subtle differences in subcellular localization of enzymes and substrate precursor maturation might influence pGlu-product formation.


Related Compounds

  • sodiumborohydride
  • sucrose
  • Phenylacetic acid
  • Tris(2-methyl-2-pr...
  • TRH

Related Articles:

A new route for synthesis of silver:gold alloy nanoparticles loaded within phosphatidylcholine liposome structure as an effective antibacterial agent against Pseudomonas aeruginosa.

2015-03-01

[J. Liposome Res. 25(1) , 38-45, (2015)]

Development of Man-rGO for Targeted Eradication of Macrophage Ablation.

2015-09-08

[Mol. Pharm. 12 , 3226-36, (2015)]

Dual-Mode SERS-Fluorescence Immunoassay Using Graphene Quantum Dot Labeling on One-Dimensional Aligned Magnetoplasmonic Nanoparticles.

2015-06-10

[ACS Appl. Mater. Interfaces 7 , 12168-75, (2015)]

One Step Preparation of Reduced Graphene Oxide/Pd-Fe3 O4 @Polypyrrole Composites and Their Application in Catalysis.

2015-09-01

[Chem. Asian J. 10 , 1940-7, (2015)]

Surface modification-induced phase transformation of hexagonal close-packed gold square sheets.

2015-01-01

[Nat. Commun. 6 , 6571, (2015)]

More Articles...