International Journal of Pharmaceutics 2015-07-25

Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice.

Ana Serralheiro, Gilberto Alves, Ana Fortuna, Amílcar Falcão

Index: Int. J. Pharm. 490 , 39-46, (2015)

Full Text: HTML

Abstract

Pharmacoresistance is considered one of the major causes underlying the failure of the anticonvulsant therapy, demanding the development of alternative and more effective therapeutic approaches. Due to the particular anatomical features of the nasal cavity, intranasal administration has been explored as a means of preferential drug delivery to the brain. The purpose of the present study was to assess the pharmacokinetics of lamotrigine administered by the intranasal route to mice, and to investigate whether a direct transport of the drug from nose to brain could be involved. The high bioavailability achieved for intranasally administered lamotrigine (116.5%) underscored the fact that a substantial fraction of the drug has been absorbed to the systemic circulation. Nonetheless, the heterogeneous biodistribution of lamotrigine in different brain regions, with higher concentration levels attained in the olfactory bulb comparatively to the frontal cortex and the remaining portion of the brain, strongly suggest that lamotrigine was directly transferred to the brain via the olfactory neuronal pathway, circumventing the blood-brain barrier. Therefore, it seems that intranasal route can be assumed as a suitable and valuable drug delivery strategy for the chronic treatment of epilepsy, also providing a promising alternative approach for a prospective management of pharmacoresistance. Copyright © 2015 Elsevier B.V. All rights reserved.


Related Compounds

  • sodium dihydrogen...
  • Sodium hydrogen ph...
  • Acetonitrile
  • Hydrochloric acid
  • Methanol
  • Propylene Glycol
  • ethyl acetate
  • Monopotassium phos...
  • Triethylamine
  • trisodium phosphat...

Related Articles:

Ultrasensitive and rapid screening of mercury(II) ions by dual labeling colorimetric method in aqueous samples and applications in mercury-poisoned animal tissues.

2015-04-08

[Anal. Chim. Acta 868 , 45-52, (2015)]

A lab-on-a-chip device for analysis of amlodipine in biological fluids using peroxyoxalate chemiluminescence system.

2014-12-01

[Luminescence 29(8) , 1148-53, (2014)]

Engineering self-contained DNA circuit for proximity recognition and localized signal amplification of target biomolecules.

2014-08-01

[Nucleic Acids Res. 42(14) , 9523-30, (2014)]

Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions.

2015-05-01

[Eur. J. Pharm. Biopharm. 92 , 146-54, (2015)]

Multistage aqueous two-phase extraction of a monoclonal antibody from cell supernatant.

2015-01-01

[Biotechnol. Prog. 31 , 925-36, (2015)]

More Articles...