International Journal of Molecular Sciences 2015-01-01

Behavioral Deficits Are Accompanied by Immunological and Neurochemical Changes in a Mouse Model for Neuropsychiatric Lupus (NP-SLE).

Yan Li, Amanda R Eskelund, Hua Zhou, David P Budac, Connie Sánchez, Maria Gulinello

Index: Int. J. Mol. Sci. 16 , 15150-71, (2015)

Full Text: HTML

Abstract

Neuropsychiatric symptoms of systemic lupus erythematosus (NP-SLE) have been understudied compared to end-organ failure and peripheral pathology. Neuropsychiatric symptoms, particularly affective and cognitive indications, may be among the earliest manifestations of SLE. Among the potential pathophysiological mechanisms responsible for NP-SLE are increased peripheral pro-inflammatory cytokines, subsequent induction of indoleamine-2,3-dioxygenase (IDO) and activation of the kynurenine pathway. In the MRL/MpJ-Faslpr (MRL/lpr) murine model of lupus, depression-like behavior and cognitive dysfunction is evident before significant levels of autoantibody titers and nephritis are present. We examined the behavioral profile of MRL/lpr mice and their congenic controls, a comprehensive plasma cytokine and chemokine profile, and brain levels of serotonin and kynurenine pathway metabolites. Consistent with previous studies, MRL/lpr mice had increased depression-like behavior and visuospatial memory impairment. Plasma levels of different inflammatory molecules (Haptoglobin, interleukin 10 (IL-10), interferon γ-inducible protein 10 (IP-10/CXCL10), lymphotactin, macrophage inhibitory protein 3β (MIP-3β/CCL19), monocyte chemotactic protein 1, 3 and 5 (MCP-1/CCL2, MCP-3/CCL7, MCP-5/CCL12), vascular cell adhesion molecule 1 (VCAM-1), lymphotactin and interferon γ (IFN-γ)) were increased in MRL/lpr mice. In cortex and hippocampus, MRL/lpr mice had increased levels of kynurenine pathway metabolites (kynurenine, 3-hydroxykynurenine, 3-hydroxynthranilic acid and quinolinic acid). Therefore, our study suggests that increased cytokine expression may be critical in the regulation subtle aspects of brain function in NP-SLE via induction of IDO and tryptophan/kynurenine metabolism.


Related Compounds

  • Quinolinic acid
  • Anthranilic acid
  • Nicotinamide
  • 3-Hydroxyanthranil...
  • DL-Tryptophan
  • SODIUM NITRI...
  • Disodium nitrilotr...
  • Xanthurenic acid
  • Kynurenic acid
  • Kynurenine

Related Articles:

The CB₁ cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway.

2015-10-01

[Cell Death Differ. 22 , 1618-29, (2015)]

Activation of the kynurenine pathway and increased production of the excitotoxin quinolinic acid following traumatic brain injury in humans.

2015-01-01

[J. Neuroinflammation 12 , 110, (2015)]

Age-related reference values for urinary organic acids in a healthy Turkish pediatric population.

1994-06-01

[Clin. Chem. 40(6) , 862-6, (1994)]

Chemical genetics reveals a complex functional ground state of neural stem cells.

2007-05-01

[Nat. Chem. Biol. 3(5) , 268-273, (2007)]

Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression.

2009-02-12

[Nature 457(7231) , 910-4, (2009)]

More Articles...