Aquatic Toxicology 2015-02-01

Timing matters: sensitivity of Daphnia magna dormant eggs to fenoxycarb exposure depends on embryonic developmental stage.

Sabine Navis, Aline Waterkeyn, Adinda Putman, Luc De Meester, Guido Vanermen, Luc Brendonck

Index: Aquat. Toxicol. 159 , 176-83, (2015)

Full Text: HTML

Abstract

Although Daphnia magna is a key species in many lentic freshwater ecosystems and is commonly used as model organism in ecology and ecotoxicology, very little is known about the effects of chemicals on their dormant life stages. Dormant eggs (ephippia) are produced when environmental conditions deteriorate, and Daphnia switch from clonal to sexual reproduction. Ephippia produced over different growing seasons can accumulate in the sediment of ponds and lakes, where they can be exposed to pesticides and other (anthropogenic) stressors. In the present study, we have investigated the effects of pesticide exposure on dormant eggs at different embryonic developmental stages and evaluated the degree of protection against pollution provided by the ephippial case. We therefore conducted a hatching experiment in which decapsulated and encapsulated dormant eggs were exposed to an insect growth regulator (fenoxycarb) at different stages during their development, both before and after activation of the eggs. In addition, we developed an analytical method to measure fenoxycarb concentrations in the dormant eggs. Fenoxycarb negatively affected development and hatching success and changed the timing of hatching in activated and in dormant eggs. Hatching characteristics as well as fenoxycarb concentrations inside the eggs differed significantly between exposure treatments. Final stages of embryonic development were most sensitive to pesticide exposure and had the highest tissue concentrations of fenoxycarb. Tissue concentrations did not differ significantly between decapsulated and encapsulated eggs, suggesting that the ephippial case offers limited or no direct protection against pesticide exposure. With this study we provide new evidence showing that pesticides can bioconcentrate in and affect D. magna dormant eggs. The severity of the effects on developing embryos depends on the timing of pesticide exposure. Our results stress the importance of considering the full life-cycle of model organisms used in ecotoxicological studies, since these are ultimately aimed at assessing risks of chemical exposure on natural aquatic ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.


Related Compounds

  • Formic Acid
  • Ethanol
  • Ammonium acetate
  • Acetonitrile
  • Methanol
  • fenoxycarb
  • Beta-D-allose

Related Articles:

Neuroprotective effect of modified Chungsimyeolda-tang, a traditional Korean herbal formula, via autophagy induction in models of Parkinson's disease.

2015-01-15

[J. Ethnopharmacol. 159 , 93-101, (2014)]

Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis.

2014-11-01

[J. Am. Soc. Mass Spectrom. 25(11) , 1897-907, (2014)]

Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein.

2014-12-01

[Biochim. Biophys. Acta 1842(12 Pt A) , 2345-56, (2014)]

Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography.

2015-02-13

[J. Chromatogr. A. 1381 , 54-63, (2015)]

Silencing urease: a key evolutionary step that facilitated the adaptation of Yersinia pestis to the flea-borne transmission route.

2014-12-30

[Proc. Natl. Acad. Sci. U. S. A. 111(52) , 18709-14, (2014)]

More Articles...