Biopharmaceutics & Drug Disposition 2014-07-01

Mechanism of an unusual, but clinically significant, digoxin-bupropion drug interaction.

Jiake He, Yang Yu, Bhagwat Prasad, Xijing Chen, Jashvant D Unadkat

Index: Biopharm. Drug Dispos. 35(5) , 253-63, (2014)

Full Text: HTML

Abstract

An unusual, but clinically significant, digoxin (DIG)-bupropion (BUP) drug interaction (DDI), in which BUP increased DIG renal clearance by 80% is reported. To investigate the mechanism(s) of this unusual DDI, first the effect of BUP, its circulating metabolites or their combination on [(3) H]-DIG transport by cells expressing human P-gp or human OATP4C1 was determined. Second, the study asked whether this DDI could be replicated in the rat so that it could be used to conduct mechanistic studies. Then, the effect of BUP and its rat metabolites on [(3) H]-DIG transport were tested by cells expressing rat Oatp4c1. Bupropion and its metabolites had no effect on human P-gp mediated transepithelial transport of [(3) H]-DIG. Bupropion and hydroxybupropion (HBUP) significantly stimulated H-OATP4C1 mediated transport of [(3) H]-DIG. In addition, BUP cocktail (BUP plus its metabolites) significantly increased the H-OATP4C1 mediated transport of [(3) H]-DIG, and partially reversed the inhibition by 100 µm DIG. However, erythro-hydrobupropion (EBUP) and threo-hydrobupropion (TBUP) did not affect the [(3) H]-DIG uptake by H-OATP4C1 cells. Bupropion administration significantly increased digoxin renal clearance in rats. Surprisingly, bupropion significantly inhibited r-Oatp4c1 mediated transport of [(3) H]-DIG at clinically relevant unbound plasma concentrations of BUP or those observed in the rat study, while HBUP or TBUP did not. These data support our hypothesis that at clinically relevant plasma concentrations, bupropion and its metabolites activate H-OATP4C1 mediated DIG tubular secretion, and could possibly explain the increase in digoxin renal clearance produced by bupropion. While bupropion increased digoxin renal clearance in the rat, it appeared to do so by inhibiting r-Oatp4c1-mediated digoxin renal reabsorption.Copyright © 2014 John Wiley & Sons, Ltd.


Related Compounds

  • Formic Acid
  • Acetonitrile
  • Methanol
  • Formic acid ammoni...
  • digoxin
  • diazepam

Related Articles:

Neuroprotective effect of modified Chungsimyeolda-tang, a traditional Korean herbal formula, via autophagy induction in models of Parkinson's disease.

2015-01-15

[J. Ethnopharmacol. 159 , 93-101, (2014)]

Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis.

2014-11-01

[J. Am. Soc. Mass Spectrom. 25(11) , 1897-907, (2014)]

Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein.

2014-12-01

[Biochim. Biophys. Acta 1842(12 Pt A) , 2345-56, (2014)]

Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography.

2015-02-13

[J. Chromatogr. A. 1381 , 54-63, (2015)]

Silencing urease: a key evolutionary step that facilitated the adaptation of Yersinia pestis to the flea-borne transmission route.

2014-12-30

[Proc. Natl. Acad. Sci. U. S. A. 111(52) , 18709-14, (2014)]

More Articles...