Antimicrobial Agents and Chemotherapy 2014-09-01

Relationship between glycopeptide production and resistance in the actinomycete Nonomuraea sp. ATCC 39727.

Giorgia Letizia Marcone, Elisa Binda, Lucia Carrano, Mervyn Bibb, Flavia Marinelli

Index: Antimicrob. Agents Chemother. 58(9) , 5191-201, (2014)

Full Text: HTML

Abstract

Glycopeptides and β-lactams inhibit bacterial peptidoglycan synthesis in Gram-positive bacteria; resistance to these antibiotics is studied intensively in enterococci and staphylococci because of their relevance to infectious disease. Much less is known about antibiotic resistance in glycopeptide-producing actinomycetes that are likely to represent the evolutionary source of resistance determinants found in bacterial pathogens. Nonomuraea sp. ATCC 39727, the producer of A40926 (the precursor for the semisynthetic dalbavancin), does not harbor the canonical vanHAX genes. Consequently, we investigated the role of the β-lactam-sensitive D,D-peptidase/D,D-carboxypeptidase encoded by vanYn, the only van-like gene found in the A40926 biosynthetic gene cluster, in conferring immunity to the antibiotic in Nonomuraea sp. ATCC 39727. Taking advantage of the tools developed recently to genetically manipulate this uncommon actinomycete, we varied vanYn gene dosage and expressed vanHatAatXat from the teicoplanin producer Actinoplanes teichomyceticus in Nonomuraea sp. ATCC 39727. Knocking out vanYn, complementing a vanYn mutant, or duplicating vanYn had no effect on growth but influenced antibiotic resistance and, in the cases of complementation and duplication, antibiotic production. Nonomuraea sp. ATCC 39727 was found to be resistant to penicillins, but its glycopeptide resistance was diminished in the presence of penicillin G, which inhibits VanYn activity. The heterologous expression of vanHatAatXat increased A40926 resistance in Nonomuraea sp. ATCC 39727 but did not increase antibiotic production, indicating that the level of antibiotic production is not directly determined by the level of resistance. The vanYn-based self-resistance in Nonomuraea sp. ATCC 39727 resembles the glycopeptide resistance mechanism described recently in mutants of Enterococcus faecium selected in vitro for high-level resistance to glycopeptides and penicillins.Copyright © 2014, American Society for Microbiology. All Rights Reserved.


Related Compounds

  • Formic Acid
  • D-(+)-Glucose
  • H-D-Ala-D-Ala-O...
  • PMSF
  • Ampicillin Trihyd...
  • Bacitracin
  • Ampicillin

Related Articles:

Neuroprotective effect of modified Chungsimyeolda-tang, a traditional Korean herbal formula, via autophagy induction in models of Parkinson's disease.

2015-01-15

[J. Ethnopharmacol. 159 , 93-101, (2014)]

Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis.

2014-11-01

[J. Am. Soc. Mass Spectrom. 25(11) , 1897-907, (2014)]

Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein.

2014-12-01

[Biochim. Biophys. Acta 1842(12 Pt A) , 2345-56, (2014)]

Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography.

2015-02-13

[J. Chromatogr. A. 1381 , 54-63, (2015)]

Silencing urease: a key evolutionary step that facilitated the adaptation of Yersinia pestis to the flea-borne transmission route.

2014-12-30

[Proc. Natl. Acad. Sci. U. S. A. 111(52) , 18709-14, (2014)]

More Articles...