Journal of Environmental Sciences 2013-02-01

La-EDTA coated Fe3O4 nanomaterial: preparation and application in removal of phosphate from water.

Jiao Yang, Qingru Zeng, Liang Peng, Ming Lei, Huijuan Song, Boqing Tie, Jidong Gu

Index: J. Environ. Sci. (China) 25(2) , 413-8, (2013)

Full Text: HTML

Abstract

La-EDTA-Fe3O4 was prepared by a chemical co-precipitation method. The magnetic composite was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Furthermore, the adsorption properties of La-EDTA-Fe3O4 toward phosphate in water were investigated. The uptake rate of phosphate in water by La-EDTA-Fe3O4 was 3-1000 times than that of EDTA-Fe3O4, and reached 97.8% at 7 hr. The adsorption process agreed well with the Freundlich model and kinetics studies showed that the adsorption of phosphate proceeds according to pseudo second-order adsorption kinetics. The maximum removal rate was achieved at pH 6.0-7.0. The La-EDTA-Fe3O4 had good adsorption properties and could be separated well from aqueous solution by a permanent magnet. Therefore, this nanomaterial has potential application for the removal of phosphate from large water bodies.


Related Compounds

  • Ethylenediaminetet...
  • Disodium monocalci...
  • Disodium edetate d...
  • Iron(II,III) ox...
  • Ethylenediaminetet...

Related Articles:

Differential protective effects of extra virgin olive oil and corn oil in liver injury: a proteomic study.

2014-12-01

[Food Chem. Toxicol. 74 , 131-8, (2014)]

Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca²⁺ ions in oxidative processes.

2013-06-21

[Life Sci. 92(23) , 1110-7, (2013)]

Determination of vanadium in groundwater samples with an improved kinetic spectrophotometric method.

2014-01-01

[Environ. Technol. 35(9-12) , 1165-74, (2014)]

Separation of metals and phosphorus from incinerated sewage sludge ash.

2013-01-01

[Water Sci. Technol. 67(11) , 2488-93, (2013)]

Interaction of intraocular lenses with fibronectin and human lens epithelial cells: Effect of chemical composition and aging.

2015-12-01

[J. Biomed. Mater. Res. A 103 , 3843-51, (2015)]

More Articles...