Physical Chemistry Chemical Physics 2015-11-28

Reproducible, stable and fast electrochemical activity from easy to make graphene on copper electrodes.

Concha Bosch-Navarro, Zachary P L Laker, Jonathan P Rourke, Neil R Wilson

Index: Phys. Chem. Chem. Phys. 17 , 29628-36, (2015)

Full Text: HTML

Abstract

The electrochemical activity of graphene is of fundamental importance to applications from energy storage to sensing, but has proved difficult to unambiguously determine due to the challenges innate to fabricating well defined graphene electrodes free from contamination. Here, we report the electrochemical activity of chemical vapour deposition (CVD) graphene grown on copper foil without further treatment, through appropriate choice of electrolyte. Fast electron transfer kinetics are observed for both inner and outer sphere redox couples with fully covered graphene on copper electrodes (k° = 0.014 ± 0.001 cm s(-1) or k° = 0.012 ± 0.001 cm s(-1) for potassium ferrocyanide(II) and hexaamineruthenium(III) chloride, respectively). Unlike highly oriented pyrolytic graphite electrodes, the electrochemical response of the graphene on copper electrodes is stable, with no apparent electrode fouling even with inner sphere redox couples, and reproducible independent of the time between growth and measurement. Comparison between fully covered electrodes, and partial coverage of graphene with varying graphene grain sizes (from roughly 50 μm to <10 μm) shows that in this instance the basal plane of graphene is electrochemically active. These CVD grown graphene on copper electrodes are quick, cheap and reproducible to make and hence provide a convenient platform for further investigation of graphene electrochemistry and the effect of covalent and non-covalent modification.


Related Compounds

  • Potassium ferrocya...
  • Potassium carbonat...
  • Potassium Nitrate
  • potassium,dioxido(...
  • Ruthenium(3+) chlo...

Related Articles:

Carboxybetaine Modified Interface for Electrochemical Glycoprofiling of Antibodies Isolated from Human Serum.

2015-06-30

[Langmuir 31 , 7148-57, (2015)]

Novel organic solvents for electrochemistry at the liquid/liquid interface.

2015-03-21

[Analyst 140(6) , 1947-54, (2015)]

Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence.

2015-04-01

[Development 142(7) , 1242-53, (2015)]

Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles.

2014-07-01

[Anal. Biochem. 456 , 43-9, (2014)]

Shape-controlled gold nanoparticles supported on MoS₂ nanosheets: synergistic effect of thionine and MoS₂ and their application for electrochemical label-free immunosensing.

2015-12-07

[Nanoscale 7 , 19129-35, (2015)]

More Articles...