Delivery of an engineered HGF fragment in an extracellular matrix-derived hydrogel prevents negative LV remodeling post-myocardial infarction.
Sonya B Sonnenberg, Aboli A Rane, Cassie J Liu, Nikhil Rao, Gillie Agmon, Sophia Suarez, Raymond Wang, Adam Munoz, Vaibhav Bajaj, Shirley Zhang, Rebecca Braden, Pamela J Schup-Magoffin, Oi Ling Kwan, Anthony N DeMaria, Jennifer R Cochran, Karen L Christman
Index: Biomaterials 45 , 56-63, (2015)
Full Text: HTML
Abstract
Hepatocyte growth factor (HGF) has been shown to have anti-fibrotic, pro-angiogenic, and cardioprotective effects; however, it is highly unstable and expensive to manufacture, hindering its clinical translation. Recently, a HGF fragment (HGF-f), an alternative c-MET agonist, was engineered to possess increased stability and recombinant expression yields. In this study, we assessed the potential of HGF-f, delivered in an extracellular matrix (ECM)-derived hydrogel, as a potential treatment for myocardial infarction (MI). HGF-f protected cardiomyocytes from serum-starvation and induced down-regulation of fibrotic markers in whole cardiac cell isolate compared to the untreated control. The ECM hydrogel prolonged release of HGF-f compared to collagen gels, and in vivo delivery of HGF-f from ECM hydrogels mitigated negative left ventricular (LV) remodeling, improved fractional area change (FAC), and increased arteriole density in a rat myocardial infarction model. These results indicate that HGF-f may be a viable alternative to using recombinant HGF, and that an ECM hydrogel can be employed to increase growth factor retention and efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Related Compounds
Related Articles:
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2014-12-08
[Biomacromolecules 15(12) , 4561-9, (2014)]
2014-10-01
[Eur. J. Pharm. Biopharm. 88(2) , 406-14, (2014)]
2015-02-15
[Food Chem. 169 , 28-33, (2014)]
2015-04-30
[Int. J. Pharm. 484(1-2) , 283-91, (2015)]