Biochimica et Biophysica Acta 2014-10-01

Structure-dependent interactions of polyphenols with a biomimetic membrane system.

Huong T T Phan, Tsuyoshi Yoda, Bindu Chahal, Masamune Morita, Masahiro Takagi, Mun'delanji C Vestergaard

Index: Biochim. Biophys. Acta 1838(10) , 2670-7, (2014)

Full Text: HTML

Abstract

Polyphenols are naturally-occurring compounds, reported to be biologically active, and through their interactions with cell membranes. Although association of the polyphenols with the bilayer has been reported, the detailed mechanism of interaction is not yet well elucidated. We report on spatio-temporal real-time membrane dynamics observed in the presence of polyphenols. Two distinct membrane dynamics, corresponding to the two classes of polyphenols used, were observed. Flavonoids (epi-gallocatechin-3-gallate, gallocatechin, theaflavin and theaflavin-3-gallate) caused lipid membrane aggregation and rigidification. As simple structural modification through opening of the aromatic C-ring into an olefin bond, present in trans-stilbenes (resveratrol and picead), completely changed the membrane properties, increasing fluidity and inducing fluctuation. There were differences in the membrane transformations within the same class of polyphenols. Structure-dependent classification of membrane dynamics may contribute to a better understanding of the physicochemical mechanism involved in the bioactivity of polyphenols. In general, an increase in the number of hydrophilic side chains (galloyl, hydroxyl, glucoside, gallate) increased the reactivity of the polyphenols. Most notable was the difference observed through a simple addition of the gallate group. Unraveling the importance of these polyphenols, at a functional group level further opens the key to tailored design of bioactive compounds as potential drug candidates. Copyright © 2014 Elsevier B.V. All rights reserved.


Related Compounds

  • Chloroform
  • Methanol
  • Resveratrol
  • 1,2-Dipalmitoyl-sn...

Related Articles:

A survey of the interactome of Kaposi's sarcoma-associated herpesvirus ORF45 revealed its binding to viral ORF33 and cellular USP7, resulting in stabilization of ORF33 that is required for production of progeny viruses.

2015-05-01

[J. Virol. 89(9) , 4918-31, (2015)]

Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response.

2015-01-01

[Eur. J. Pharm. Biopharm. 89 , 30-9, (2015)]

SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression.

2015-01-01

[Nucleic Acids Res. 42(18) , 11433-46, (2014)]

The dynamics of giant unilamellar vesicle oxidation probed by morphological transitions.

2014-10-01

[Biochim. Biophys. Acta 1838(10) , 2615-24, (2014)]

The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184.

2014-09-01

[Pharmacol. Biochem. Behav. 124 , 153-9, (2014)]

More Articles...