Carbohydrate polymers 2016-01-01

Ionic liquid mediated technology for synthesis of cellulose acetates using different co-solvents.

Olatunde Jogunola, Valerie Eta, Mattias Hedenström, Ola Sundman, Tapio Salmi, Jyri-Pekka Mikkola

Index: Carbohydr. Polym. 135 , 341-8, (2015)

Full Text: HTML

Abstract

In this work, cellulose acetate was synthesized under homogeneous conditions. Cellulose was first dispersed in acetone, acetonitrile, 1,5-diazabicyclo(4.3.0)non-5-ene (DBN) or dimethyl sulphoxide (DMSO) and the resulting suspension was dissolved in an ionic liquid, 1,5-diazabicyclo(4.3.0)non-5-enium acetate [HDBN][OAc] at 70°C for 0.5h. It was possible to dissolve more than 12wt% cellulose with a degree of polymerization in the range of 1000-1100. The dissolved cellulose was derivatized with acetic anhydride (Ac2O) to yield acetylated cellulose. As expected, the use of the co-solvents improved the acetylation process significantly. In fact, cellulose acetates with different properties could be obtained in half an hour, thus facilitating rapid processing. When DBN was used as the dispersing agent (the precursor of the ionic liquid), the problems associated with recycling of the ionic liquid were significantly reduced. In fact, additional [HDBN][OAc] was obtained from the interaction of the DBN and the by-product, acetic acid (from Ac2O). However, the cellulose acetate obtained in this manner had the lowest DS. Consequently, the native cellulose and acetylated celluloses were characterized by means of (1)H- and (13)C-NMR, FT-IR, GPC/SEC and by titration. The cellulose acetates produced were soluble in organic solvents such as acetone, chloroform, dichloromethane and DMSO which is essential for their further processing. It was demonstrated that the ionic liquid can be recovered from the system by distillation and re-used in consecutive acetylation batches. Copyright © 2015 Elsevier Ltd. All rights reserved.


Related Compounds

  • Chloroform
  • Acetone
  • DIMETHYL SUL...
  • Acetonitrile
  • Methanol
  • Dichloromethane
  • Ethanoic anhydride
  • Dimethyl sulfoxide
  • Lithium chloride
  • Lithium bromide

Related Articles:

A survey of the interactome of Kaposi's sarcoma-associated herpesvirus ORF45 revealed its binding to viral ORF33 and cellular USP7, resulting in stabilization of ORF33 that is required for production of progeny viruses.

2015-05-01

[J. Virol. 89(9) , 4918-31, (2015)]

Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response.

2015-01-01

[Eur. J. Pharm. Biopharm. 89 , 30-9, (2015)]

SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression.

2015-01-01

[Nucleic Acids Res. 42(18) , 11433-46, (2014)]

The dynamics of giant unilamellar vesicle oxidation probed by morphological transitions.

2014-10-01

[Biochim. Biophys. Acta 1838(10) , 2615-24, (2014)]

The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184.

2014-09-01

[Pharmacol. Biochem. Behav. 124 , 153-9, (2014)]

More Articles...