Comparison of sodium dodecyl sulfate depletion techniques for proteome analysis by mass spectrometry.
Carolyn Kachuk, Kegan Stephen, Alan Doucette
Index: J. Chromatogr. A. 1418 , 158-66, (2015)
Full Text: HTML
Abstract
In proteomics, sodium dodecyl sulfate (SDS) is favored for protein solubilization and mass-based separation (e.g. GELFrEE or SDS PAGE). Numerous SDS depletion techniques are available to purify proteins ahead of mass spectrometry. The effectiveness of the purification has a controlling influence on the success of the analysis. Here we quantitatively assess eight approaches to SDS depletion: in-gel digestion; protein precipitation in acetone or with TCA; detergent precipitation with KCl; strong cation exchange; protein level and peptide level purification with Pierce detergent removal cartridges; and FASP II. Considering protein purity, FASP II showed the highest degree of SDS removal, matching that of in-gel digestion (over 99.99% depleted). Other methods (acetone, strong cation exchange, Pierce cartridges) also deplete SDS to levels amenable to LC-MS (>99%). Accounting for protein recovery, FASP II revealed significant sample loss (<40% yield); other approaches show even greater protein loss. We further assessed acetone precipitation, having the highest protein recovery relative to FASP II, to process GELFrEE fractionated Escherichia coli ahead of bottom-up mass spectrometry. Acetone precipitation yielded a 17% average increase in identified proteins, and 40% increase in peptides, indicating this approach as a favored strategy for SDS depletion in a proteomics workflow. Copyright © 2015 Elsevier B.V. All rights reserved.
Related Compounds
Related Articles:
2015-05-01
[J. Virol. 89(9) , 4918-31, (2015)]
2015-01-01
[Eur. J. Pharm. Biopharm. 89 , 30-9, (2015)]
2015-01-01
[Nucleic Acids Res. 42(18) , 11433-46, (2014)]
2014-10-01
[Biochim. Biophys. Acta 1838(10) , 2615-24, (2014)]
2014-09-01
[Pharmacol. Biochem. Behav. 124 , 153-9, (2014)]