A molecular nematic liquid crystalline material for high-performance organic photovoltaics.
Kuan Sun, Zeyun Xiao, Shirong Lu, Wojciech Zajaczkowski, Wojciech Pisula, Eric Hanssen, Jonathan M White, Rachel M Williamson, Jegadesan Subbiah, Jianyong Ouyang, Andrew B Holmes, Wallace W H Wong, David J Jones
Index: Nat. Commun. 6 , 6013, (2015)
Full Text: HTML
Abstract
Solution-processed organic photovoltaic cells (OPVs) hold great promise to enable roll-to-roll printing of environmentally friendly, mechanically flexible and cost-effective photovoltaic devices. Nevertheless, many high-performing systems show best power conversion efficiencies (PCEs) with a thin active layer (thickness is ~100 nm) that is difficult to translate to roll-to-roll processing with high reproducibility. Here we report a new molecular donor, benzodithiophene terthiophene rhodanine (BTR), which exhibits good processability, nematic liquid crystalline behaviour and excellent optoelectronic properties. A maximum PCE of 9.3% is achieved under AM 1.5G solar irradiation, with fill factor reaching 77%, rarely achieved in solution-processed OPVs. Particularly promising is the fact that BTR-based devices with active layer thicknesses up to 400 nm can still afford high fill factor of ~70% and high PCE of ~8%. Together, the results suggest, with better device architectures for longer device lifetime, BTR is an ideal candidate for mass production of OPVs.
Related Compounds
Related Articles:
2015-05-01
[J. Virol. 89(9) , 4918-31, (2015)]
2015-01-01
[Eur. J. Pharm. Biopharm. 89 , 30-9, (2015)]
2015-01-01
[Nucleic Acids Res. 42(18) , 11433-46, (2014)]
2014-10-01
[Biochim. Biophys. Acta 1838(10) , 2615-24, (2014)]
2014-09-01
[Pharmacol. Biochem. Behav. 124 , 153-9, (2014)]