Effects of moderate static magnetic fields on the voltage-gated sodium and calcium channel currents in trigeminal ganglion neurons.
Xiao-Wen Lu, Li Du, Liang Kou, Ning Song, Yu-Jiao Zhang, Min-Ke Wu, Jie-Fei Shen
Index: Electromagn. Biol. Med. 34 , 285-92, (2015)
Full Text: HTML
Abstract
To study the effects of static magnetic fields (SMF) on the electrophysiological properties of voltage-gated sodium and calcium channels on trigeminal ganglion (TRG) neurons.Acutely dissociated TRG neurons of neonatal SD rats were exposed to 125-mT and 12.5-mT SMF in exposure devices and whole-cell patch-clamp recordings were carried out to observe the changes of voltage-gated sodium channels (VGSC) and calcium channels (VGCC) currents, while laser scanning confocal microscopy was used to detect intracellular free Ca(2+) concentration in TRG neurons, respectively.(1) No obvious change of current-voltage (I-V) relationship and the peak current densities of VGSC and VGCC currents were found when TRG neurons were exposed to 125-mT and 12.5-mT SMF. However, the activation threshold, inactivation threshold and velocity of the channel currents above were significantly altered by 125-mT and 12.5-mT SMF. (2) The fluctuation of intracellular free Ca(2+) concentration within TRG neurons were slowed by 125-mT and 12.5-mT SMF. When SMF was removed, the Ca(2+) concentration level showed partial recovery in the TRG neurons previously exposed by 125-mT SMF, while there was a full recovery found in 12.5-mT-SMF-exposed neurons.Moderate-intensity SMF could affect the electrophysiological characteristics of VGCS and VGCC by altering their activation and inactivation threshold and velocity. The fluctuations of intracellular free Ca(2+) caused by SMF exposure were not permanent in TRG neurons.
Related Compounds
Related Articles:
2015-03-30
[Oncotarget 6(9) , 6811-24, (2015)]
2015-09-01
[Addict. Biol. 20 , 927-40, (2015)]
2015-01-01
[Sci. Rep. 5 , 16146, (2015)]
2015-03-01
[Biol. Trace Elem. Res. 164(1) , 130-8, (2015)]
2015-01-01
[Biomed Res. Int. 2015 , 807673, (2015)]