Damage to the blood-brain barrier during experimental cerebral malaria results from synergistic effects of CD8+ T cells with different specificities.
Chek Meng Poh, Shanshan W Howland, Gijsbert M Grotenbreg, Laurent Rénia
Index: Infect. Immun. 82(11) , 4854-64, (2014)
Full Text: HTML
Abstract
CD8(+) T cells play a pathogenic role in the development of murine experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA (PbA) infection in C57BL/6 mice. Only a limited number of CD8(+) epitopes have been described. Here, we report the identification of a new epitope from the bergheilysin protein recognized by PbA-specific CD8(+) T cells. Induction and functionality of these specific CD8(+) T cells were investigated in parallel with previously reported epitopes, using new tools such as tetramers and reporter cell lines that were developed for this study. We demonstrate that CD8(+) T cells of diverse specificities induced during PbA infection share many characteristics. They express cytolytic markers (gamma interferon [IFN-γ], granzyme B) and chemokine receptors (CXCR3, CCR5) and damage the blood-brain barrier in vivo. Our earlier finding that brain microvessels in mice infected with PbA, but not with non-ECM-causing strains, cross-presented a shared epitope was generalizable to these additional epitopes. Suppressing the induction of specific CD8(+) T cells through tolerization with a high-dose peptide injection was unable to confer protection against ECM, suggesting that CD8(+) T cells of other specificities participate in this process. The tools that we developed can be used to further investigate the heterogeneity of CD8(+) T cell responses that are involved in ECM.Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Related Compounds
Related Articles:
2014-12-16
[Nucleic Acids Res. 42(22) , 14022-30, (2014)]
2014-10-01
[Biochim. Biophys. Acta 1838(10) , 2615-24, (2014)]
2015-01-01
[Drug Dev. Ind. Pharm. 41(1) , 156-62, (2014)]
2014-01-01
[PLoS ONE 9(11) , e112818, (2014)]
2015-03-01
[Tissue Eng. Part A 21(5-6) , 948-59, (2015)]