Journal of Neuroscience 2015-07-08

Glucose Induces Slow-Wave Sleep by Exciting the Sleep-Promoting Neurons in the Ventrolateral Preoptic Nucleus: A New Link between Sleep and Metabolism.

Christophe Varin, Armelle Rancillac, Hélène Geoffroy, Sébastien Arthaud, Patrice Fort, Thierry Gallopin

Index: J. Neurosci. 35 , 9900-11, (2015)

Full Text: HTML

Abstract

Sleep-active neurons located in the ventrolateral preoptic nucleus (VLPO) play a crucial role in the induction and maintenance of slow-wave sleep (SWS). However, the cellular and molecular mechanisms responsible for their activation at sleep onset remain poorly understood. Here, we test the hypothesis that a rise in extracellular glucose concentration in the VLPO can promote sleep by increasing the activity of sleep-promoting VLPO neurons. We find that infusion of a glucose concentration into the VLPO of mice promotes SWS and increases the density of c-Fos-labeled neurons selectively in the VLPO. Moreover, we show in patch-clamp recordings from brain slices that VLPO neurons exhibiting properties of sleep-promoting neurons are selectively excited by glucose within physiological range. This glucose-induced excitation implies the catabolism of glucose, leading to a closure of ATP-sensitive potassium (KATP) channels. The extracellular glucose concentration monitors the gating of KATP channels of sleep-promoting neurons, highlighting that these neurons can adapt their excitability according to the extracellular energy status. Together, these results provide evidence that glucose may participate in the mechanisms of SWS promotion and/or consolidation.Although the brain circuitry underlying vigilance states is well described, the molecular mechanisms responsible for sleep onset remain largely unknown. Combining in vitro and in vivo experiments, we demonstrate that glucose likely contributes to sleep onset facilitation by increasing the excitability of sleep-promoting neurons in the ventrolateral preoptic nucleus (VLPO). We find here that these neurons integrate energetic signals such as ambient glucose directly to regulate vigilance states accordingly. Glucose-induced excitation of sleep-promoting VLPO neurons should therefore be involved in the drowsiness that one feels after a high-sugar meal. This novel mechanism regulating the activity of VLPO neurons reinforces the fundamental and intimate link between sleep and metabolism.Copyright © 2015 the authors 0270-6474/15/359900-12$15.00/0.


Related Compounds

  • Sodium azide
  • sodium chloride
  • Hydrogen peroxide
  • H-Dab.HCl
  • D-(+)-Glucose
  • SODIUM CHLOR...
  • 2-Deoxy-D-glucose
  • diazoxide

Related Articles:

Crystal structure of the R-protein of the multisubunit ATP-dependent restriction endonuclease NgoAVII.

2014-12-16

[Nucleic Acids Res. 42(22) , 14022-30, (2014)]

The dynamics of giant unilamellar vesicle oxidation probed by morphological transitions.

2014-10-01

[Biochim. Biophys. Acta 1838(10) , 2615-24, (2014)]

Investigations on the transfer of porphyrin from o/w emulsion droplets to liposomes with two different methods.

2015-01-01

[Drug Dev. Ind. Pharm. 41(1) , 156-62, (2014)]

β-Amyloid1-42, HIV-1Ba-L (clade B) infection and drugs of abuse induced degeneration in human neuronal cells and protective effects of ashwagandha (Withania somnifera) and its constituent Withanolide A.

2014-01-01

[PLoS ONE 9(11) , e112818, (2014)]

Coculture of peripheral blood-derived mesenchymal stem cells and endothelial progenitor cells on strontium-doped calcium polyphosphate scaffolds to generate vascularized engineered bone.

2015-03-01

[Tissue Eng. Part A 21(5-6) , 948-59, (2015)]

More Articles...